This is a Java Program to implement 2D KD Tree and print the various traversals. In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of binary space partitioning trees.
Here is the source code of the Java Program to Construct K-D Tree for 2 Dimensional Data (assume static data). The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a java program to construct a KD tree for two dimensional static data
import java.io.IOException;
class KD2DNode
{
int axis;
double[] x;
int id;
boolean checked;
boolean orientation;
KD2DNode Parent;
KD2DNode Left;
KD2DNode Right;
public KD2DNode(double[] x0, int axis0)
{
x = new double[2];
axis = axis0;
for (int k = 0; k < 2; k++)
x[k] = x0[k];
Left = Right = Parent = null;
checked = false;
id = 0;
}
public KD2DNode FindParent(double[] x0)
{
KD2DNode parent = null;
KD2DNode next = this;
int split;
while (next != null)
{
split = next.axis;
parent = next;
if (x0[split] > next.x[split])
next = next.Right;
else
next = next.Left;
}
return parent;
}
public KD2DNode Insert(double[] p)
{
x = new double[2];
KD2DNode parent = FindParent(p);
if (equal(p, parent.x, 2) == true)
return null;
KD2DNode newNode = new KD2DNode(p,
parent.axis + 1 < 2 ? parent.axis + 1 : 0);
newNode.Parent = parent;
if (p[parent.axis] > parent.x[parent.axis])
{
parent.Right = newNode;
newNode.orientation = true; //
} else
{
parent.Left = newNode;
newNode.orientation = false; //
}
return newNode;
}
boolean equal(double[] x1, double[] x2, int dim)
{
for (int k = 0; k < dim; k++)
{
if (x1[k] != x2[k])
return false;
}
return true;
}
double distance2(double[] x1, double[] x2, int dim)
{
double S = 0;
for (int k = 0; k < dim; k++)
S += (x1[k] - x2[k]) * (x1[k] - x2[k]);
return S;
}
}
class KD2DTree
{
KD2DNode Root;
int TimeStart, TimeFinish;
int CounterFreq;
double d_min;
KD2DNode nearest_neighbour;
int KD_id;
int nList;
KD2DNode CheckedNodes[];
int checked_nodes;
KD2DNode List[];
double x_min[], x_max[];
boolean max_boundary[], min_boundary[];
int n_boundary;
public KD2DTree(int i)
{
Root = null;
KD_id = 1;
nList = 0;
List = new KD2DNode[i];
CheckedNodes = new KD2DNode[i];
max_boundary = new boolean[2];
min_boundary = new boolean[2];
x_min = new double[2];
x_max = new double[2];
}
public boolean add(double[] x)
{
if (nList >= 2000000 - 1)
return false; // can't add more points
if (Root == null)
{
Root = new KD2DNode(x, 0);
Root.id = KD_id++;
List[nList++] = Root;
} else
{
KD2DNode pNode;
if ((pNode = Root.Insert(x)) != null)
{
pNode.id = KD_id++;
List[nList++] = pNode;
}
}
return true;
}
public KD2DNode find_nearest(double[] x)
{
if (Root == null)
return null;
checked_nodes = 0;
KD2DNode parent = Root.FindParent(x);
nearest_neighbour = parent;
d_min = Root.distance2(x, parent.x, 2);
;
if (parent.equal(x, parent.x, 2) == true)
return nearest_neighbour;
search_parent(parent, x);
uncheck();
return nearest_neighbour;
}
public void check_subtree(KD2DNode node, double[] x)
{
if ((node == null) || node.checked)
return;
CheckedNodes[checked_nodes++] = node;
node.checked = true;
set_bounding_cube(node, x);
int dim = node.axis;
double d = node.x[dim] - x[dim];
if (d * d > d_min)
{
if (node.x[dim] > x[dim])
check_subtree(node.Left, x);
else
check_subtree(node.Right, x);
} else
{
check_subtree(node.Left, x);
check_subtree(node.Right, x);
}
}
public void set_bounding_cube(KD2DNode node, double[] x)
{
if (node == null)
return;
int d = 0;
double dx;
for (int k = 0; k < 2; k++)
{
dx = node.x[k] - x[k];
if (dx > 0)
{
dx *= dx;
if (!max_boundary[k])
{
if (dx > x_max[k])
x_max[k] = dx;
if (x_max[k] > d_min)
{
max_boundary[k] = true;
n_boundary++;
}
}
} else
{
dx *= dx;
if (!min_boundary[k])
{
if (dx > x_min[k])
x_min[k] = dx;
if (x_min[k] > d_min)
{
min_boundary[k] = true;
n_boundary++;
}
}
}
d += dx;
if (d > d_min)
return;
}
if (d < d_min)
{
d_min = d;
nearest_neighbour = node;
}
}
public KD2DNode search_parent(KD2DNode parent, double[] x)
{
for (int k = 0; k < 2; k++)
{
x_min[k] = x_max[k] = 0;
max_boundary[k] = min_boundary[k] = false; //
}
n_boundary = 0;
KD2DNode search_root = parent;
while (parent != null && (n_boundary != 2 * 2))
{
check_subtree(parent, x);
search_root = parent;
parent = parent.Parent;
}
return search_root;
}
public void uncheck()
{
for (int n = 0; n < checked_nodes; n++)
CheckedNodes[n].checked = false;
}
public void inorder()
{
inorder(Root);
}
private void inorder(KD2DNode root)
{
if (root != null)
{
inorder(root.Left);
System.out.print("(" + root.x[0] + ", " + root.x[1] + ") ");
inorder(root.Right);
}
}
public void preorder()
{
preorder(Root);
}
private void preorder(KD2DNode root)
{
if (root != null)
{
System.out.print("(" + root.x[0] + ", " + root.x[1] + ") ");
inorder(root.Left);
inorder(root.Right);
}
}
public void postorder()
{
postorder(Root);
}
private void postorder(KD2DNode root)
{
if (root != null)
{
inorder(root.Left);
inorder(root.Right);
System.out.print("(" + root.x[0] + ", " + root.x[1] + ") ");
}
}
}
public class KDTree_TwoD_Data
{
public static void main(String args[]) throws IOException
{
int numpoints = 5;
KD2DTree kdt = new KD2DTree(numpoints);
double x[] = new double[2];
x[0] = 0.0;
x[1] = 0.0;
kdt.add(x);
x[0] = 3.3;
x[1] = 1.5;
kdt.add(x);
x[0] = 4.7;
x[1] = 11.1;
kdt.add(x);
x[0] = 5.0;
x[1] = 12.3;
kdt.add(x);
x[0] = 5.1;
x[1] = 1.2;
kdt.add(x);
System.out.println("Inorder of 2D Kd tree: ");
kdt.inorder();
System.out.println("\nPreorder of 2D Kd tree: ");
kdt.preorder();
System.out.println("\nPostorder of 2D Kd tree: ");
kdt.postorder();
}
}
Output:
$ javac KDTree_TwoD_Data.java $ java KDTree_TwoD_Data Inorder of 2D Kd tree: (0.0, 0.0) (5.1, 1.2) (3.3, 1.5) (4.7, 11.1) (5.0, 12.3) Preorder of 2D Kd tree: (0.0, 0.0) (5.1, 1.2) (3.3, 1.5) (4.7, 11.1) (5.0, 12.3) Postorder of 2D Kd tree: (5.1, 1.2) (3.3, 1.5) (4.7, 11.1) (5.0, 12.3) (0.0, 0.0)
Related posts:
Getting the Size of an Iterable in Java
Java NIO2 Path API
Java Program to Implement Sparse Matrix
A Guide to Spring Cloud Netflix – Hystrix
Handling URL Encoded Form Data in Spring REST
Default Password Encoder in Spring Security 5
Wiring in Spring: @Autowired, @Resource and @Inject
Java Program to Check if it is a Sparse Matrix
Java – Write a Reader to File
Lấy ngày giờ hiện tại trong Java
Getting Started with Custom Deserialization in Jackson
Java Program to find the peak element of an array using Binary Search approach
Intersection of Two Lists in Java
HashSet trong Java hoạt động như thế nào?
Spring Security Authentication Provider
Java Program to Implement a Binary Search Algorithm for a Specific Search Sequence
Custom Exception trong Java
Java Program to Create a Minimal Set of All Edges Whose Addition will Convert it to a Strongly Conne...
Java Program to Implement Brent Cycle Algorithm
Java Program to Implement Find all Forward Edges in a Graph
Hướng dẫn Java Design Pattern – Object Pool
Java Program to Implement Cartesian Tree
The Guide to RestTemplate
Mệnh đề if-else trong java
Java Program to Implement CountMinSketch
Guide to System.gc()
Spring Boot - Hystrix
Java Program to Delete a Particular Node in a Tree Without Using Recursion
Java Program to implement Associate Array
Java Program to Implement Bit Array
Spring Cloud Series – The Gateway Pattern
How to Define a Spring Boot Filter?