This is a Java Program to Implement Warshall Transitive closure Algorithm. Warshall’s Transitive closure algorithm is used to determine if a path exists from vertex a to vertex b for all vertex pairs (a, b) in a graph.
Here is the source code of the Java Program to Implement Warshall Algorithm. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
/**
** Java Program to Implement Warshall Algorithm
**/
import java.util.Scanner;
/** Class Warshall **/
public class Warshall
{
private int V;
private boolean[][] tc;
/** Function to make the transitive closure **/
public void getTC(int[][] graph)
{
this.V = graph.length;
tc = new boolean[V][V];
for (int i = 0; i < V; i++)
{
for (int j = 0; j < V; j++)
if (graph[i][j] != 0)
tc[i][j] = true;
tc[i][i] = true;
}
for (int i = 0; i < V; i++)
{
for (int j = 0; j < V; j++)
{
if (tc[j][i])
for (int k = 0; k < V; k++)
if (tc[j][i] && tc[i][k])
tc[j][k] = true;
}
}
}
/** Funtion to display the trasitive closure **/
public void displayTC()
{
System.out.println("\nTransitive closure :\n");
System.out.print(" ");
for (int v = 0; v < V; v++)
System.out.print(" " + v );
System.out.println();
for (int v = 0; v < V; v++)
{
System.out.print(v +" ");
for (int w = 0; w < V; w++)
{
if (tc[v][w])
System.out.print(" * ");
else
System.out.print(" ");
}
System.out.println();
}
}
/** Main function **/
public static void main (String[] args)
{
Scanner scan = new Scanner(System.in);
System.out.println("Warshall Algorithm Test\n");
/** Make an object of Warshall class **/
Warshall w = new Warshall();
/** Accept number of vertices **/
System.out.println("Enter number of vertices\n");
int V = scan.nextInt();
/** get graph **/
System.out.println("\nEnter matrix\n");
int[][] graph = new int[V][V];
for (int i = 0; i < V; i++)
for (int j = 0; j < V; j++)
graph[i][j] = scan.nextInt();
w.getTC(graph);
w.displayTC();
}
}
Warshall Algorithm Test
Enter number of vertices
6
Enter matrix
0 1 0 0 0 1
0 0 0 0 0 0
1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
Transitive closure :
0 1 2 3 4 5
0 * * * * *
1 *
2 * * * * * *
3 *
4 * *
5 * * *
Related posts:
An Intro to Spring Cloud Task
Logging in Spring Boot
Quick Guide on Loading Initial Data with Spring Boot
Java Program to Implement Johnson’s Algorithm
Working with Network Interfaces in Java
Java Program to implement Bit Matrix
Vector trong Java
Java Program to Implement Patricia Trie
Annotation trong Java 8
Spring Security Registration – Resend Verification Email
Configure a RestTemplate with RestTemplateBuilder
Java Program to Check Whether Topological Sorting can be Performed in a Graph
Introduction to Java Serialization
Java Program to Perform Right Rotation on a Binary Search Tree
Java Program to Implement the linear congruential generator for Pseudo Random Number Generation
Java Program to Find MST (Minimum Spanning Tree) using Kruskal’s Algorithm
Java – Write an InputStream to a File
Simple Single Sign-On with Spring Security OAuth2
Using Optional with Jackson
Java Program to Solve Knapsack Problem Using Dynamic Programming
A Guide to the ViewResolver in Spring MVC
Java Program to Implement Disjoint Sets
Set Interface trong Java
Comparing Two HashMaps in Java
Guide to the Volatile Keyword in Java
Tìm hiểu về xác thực và phân quyền trong ứng dụng
Introduction to Using FreeMarker in Spring MVC
Creating Docker Images with Spring Boot
Java Program to Find Strongly Connected Components in Graphs
Guide to @JsonFormat in Jackson
Spring Boot - Admin Client
Java Program to Represent Graph Using Incidence List