Java Program to Give an Implementation of the Traditional Chinese Postman Problem

This is a java program to implement chinese Postman Problem. In graph theory, a branch of mathematics, the Chinese postman problem (CPP), postman tour or route inspection problem is to find a shortest closed path or circuit that visits every edge of a (connected) undirected graph. When the graph has an Eulerian circuit (a closed walk that covers every edge once), that circuit is an optimal solution. Otherwise, the optimization problem is to find the fewest number of edges to add to the graph so that the resulting multigraph does have an Eulerian circuit.

Here is the source code of the Java Program to Give an Implementation of the Traditional Chinese Postman Problem. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.

package com.maixuanviet.graph;
 
import java.util.Vector;
 
public class ChinesePostmanProblem
{
    int            N;                // number of vertices
    int            delta[];          // deltas of vertices
    int            neg[], pos[];     // unbalanced vertices
    int            arcs[][];         // adjacency matrix, counts arcs between
                                      // vertices
    Vector<String> label[][];        // vectors of labels of arcs (for each
                                      // vertex
    // pair)
    int            f[][];            // repeated arcs in CPT
    float          c[][];            // costs of cheapest arcs or paths
    String         cheapestLabel[][]; // labels of cheapest arcs
    boolean        defined[][];      // whether path cost is defined between
                                      // vertices
    int            path[][];         // spanning tree of the graph
    float          basicCost;        // total cost of traversing each arc once
 
    void solve()
    {
        leastCostPaths();
        checkValid();
        findUnbalanced();
        findFeasible();
        while (improvements())
            ;
    }
 
    // allocate array memory, and instantiate graph object
    @SuppressWarnings("unchecked")
    ChinesePostmanProblem(int vertices)
    {
        if ((N = vertices) <= 0)
            throw new Error("Graph is empty");
        delta = new int[N];
        defined = new boolean[N][N];
        label = new Vector[N][N];
        c = new float[N][N];
        f = new int[N][N];
        arcs = new int[N][N];
        cheapestLabel = new String[N][N];
        path = new int[N][N];
        basicCost = 0;
    }
 
    ChinesePostmanProblem addArc(String lab, int u, int v, float cost)
    {
        if (!defined[u][v])
            label[u][v] = new Vector<String>();
        label[u][v].addElement(lab);
        basicCost += cost;
        if (!defined[u][v] || c[u][v] > cost)
        {
            c[u][v] = cost;
            cheapestLabel[u][v] = lab;
            defined[u][v] = true;
            path[u][v] = v;
        }
        arcs[u][v]++;
        delta[u]++;
        delta[v]--;
        return this;
    }
 
    void leastCostPaths()
    {
        for (int k = 0; k < N; k++)
            for (int i = 0; i < N; i++)
                if (defined[i][k])
                    for (int j = 0; j < N; j++)
                        if (defined[k][j]
                                && (!defined[i][j] || c[i][j] > c[i][k]
                                        + c[k][j]))
                        {
                            path[i][j] = path[i][k];
                            c[i][j] = c[i][k] + c[k][j];
                            defined[i][j] = true;
                            if (i == j && c[i][j] < 0)
                                return; // stop on negative cycle
                        }
    }
 
    void checkValid()
    {
        for (int i = 0; i < N; i++)
        {
            for (int j = 0; j < N; j++)
                if (!defined[i][j])
                    throw new Error("Graph is not strongly connected");
            if (c[i][i] < 0)
                throw new Error("Graph has a negative cycle");
        }
    }
 
    float cost()
    {
        return basicCost + phi();
    }
 
    float phi()
    {
        float phi = 0;
        for (int i = 0; i < N; i++)
            for (int j = 0; j < N; j++)
                phi += c[i][j] * f[i][j];
        return phi;
    }
 
    void findUnbalanced()
    {
        int nn = 0, np = 0; // number of vertices of negative/positive delta
        for (int i = 0; i < N; i++)
            if (delta[i] < 0)
                nn++;
            else if (delta[i] > 0)
                np++;
        neg = new int[nn];
        pos = new int[np];
        nn = np = 0;
        for (int i = 0; i < N; i++)
            // initialise sets
            if (delta[i] < 0)
                neg[nn++] = i;
            else if (delta[i] > 0)
                pos[np++] = i;
    }
 
    void findFeasible()
    {   // delete next 3 lines to be faster, but non-reentrant
        int delta[] = new int[N];
        for (int i = 0; i < N; i++)
            delta[i] = this.delta[i];
        for (int u = 0; u < neg.length; u++)
        {
            int i = neg[u];
            for (int v = 0; v < pos.length; v++)
            {
                int j = pos[v];
                f[i][j] = -delta[i] < delta[j] ? -delta[i] : delta[j];
                delta[i] += f[i][j];
                delta[j] -= f[i][j];
            }
        }
    }
 
    boolean improvements()
    {
        ChinesePostmanProblem residual = new ChinesePostmanProblem(N);
        for (int u = 0; u < neg.length; u++)
        {
            int i = neg[u];
            for (int v = 0; v < pos.length; v++)
            {
                int j = pos[v];
                residual.addArc(null, i, j, c[i][j]);
                if (f[i][j] != 0)
                    residual.addArc(null, j, i, -c[i][j]);
            }
        }
        residual.leastCostPaths(); // find a negative cycle
        for (int i = 0; i < N; i++)
            if (residual.c[i][i] < 0) // cancel the cycle (if any)
            {
                int k = 0, u, v;
                boolean kunset = true;
                u = i;
                do // find k to cancel
                {
                    v = residual.path[u][i];
                    if (residual.c[u][v] < 0 && (kunset || k > f[v][u]))
                    {
                        k = f[v][u];
                        kunset = false;
                    }
                }
                while ((u = v) != i);
                u = i;
                do // cancel k along the cycle
                {
                    v = residual.path[u][i];
                    if (residual.c[u][v] < 0)
                        f[v][u] -= k;
                    else
                        f[u][v] += k;
                }
                while ((u = v) != i);
                return true; // have another go
            }
        return false; // no improvements found
    }
 
    static final int NONE = -1; // anything < 0
 
    int findPath(int from, int f[][]) // find a path between unbalanced vertices
    {
        for (int i = 0; i < N; i++)
            if (f[from][i] > 0)
                return i;
        return NONE;
    }
 
    void printCPT(int startVertex)
    {
        int v = startVertex;
        // delete next 7 lines to be faster, but non-reentrant
        int arcs[][] = new int[N][N];
        int f[][] = new int[N][N];
        for (int i = 0; i < N; i++)
            for (int j = 0; j < N; j++)
            {
                arcs[i][j] = this.arcs[i][j];
                f[i][j] = this.f[i][j];
            }
        while (true)
        {
            int u = v;
            if ((v = findPath(u, f)) != NONE)
            {
                f[u][v]--; // remove path
                for (int p; u != v; u = p) // break down path into its arcs
                {
                    p = path[u][v];
                    System.out.println("Take arc " + cheapestLabel[u][p]
                            + " from " + u + " to " + p);
                }
            }
            else
            {
                int bridgeVertex = path[u][startVertex];
                if (arcs[u][bridgeVertex] == 0)
                    break; // finished if bridge already used
                v = bridgeVertex;
                for (int i = 0; i < N; i++)
                    // find an unused arc, using bridge last
                    if (i != bridgeVertex && arcs[u][i] > 0)
                    {
                        v = i;
                        break;
                    }
                arcs[u][v]--; // decrement count of parallel arcs
                System.out.println("Take arc "
                        + label[u][v].elementAt(arcs[u][v]) + " from " + u
                        + " to " + v); // use each arc label in turn
            }
        }
    }
 
    static public void main(String args[])
    {
        // create a graph of four vertices
        ChinesePostmanProblem G = new ChinesePostmanProblem(4);
        // add the arcs for the example graph
        G.addArc("a", 0, 1, 1).addArc("b", 0, 2, 1).addArc("c", 1, 2, 1)
                .addArc("d", 1, 3, 1).addArc("e", 2, 3, 1).addArc("f", 3, 0, 1);
        G.solve(); // find the CPT
        G.printCPT(0); // print it, starting from vertex 0
        System.out.println("Cost = " + G.cost());
        OpenCPP.test();
    }
 
    // Print arcs and f
    void debugarcf()
    {
        for (int i = 0; i < N; i++)
        {
            System.out.print("f[" + i + "]= ");
            for (int j = 0; j < N; j++)
                System.out.print(f[i][j] + " ");
            System.out.print("  arcs[" + i + "]= ");
            for (int j = 0; j < N; j++)
                System.out.print(arcs[i][j] + " ");
            System.out.println();
        }
    }
 
    // Print out most of the matrices: defined, path and f
    void debug()
    {
        for (int i = 0; i < N; i++)
        {
            System.out.print(i + " ");
            for (int j = 0; j < N; j++)
                System.out
                        .print(j + ":" + (defined[i][j] ? "T" : "F") + " "
                                + c[i][j] + " p=" + path[i][j] + " f="
                                + f[i][j] + "; ");
            System.out.println();
        }
    }
 
    // Print out non zero f elements, and phi
    void debugf()
    {
        float sum = 0;
        for (int i = 0; i < N; i++)
        {
            boolean any = false;
            for (int j = 0; j < N; j++)
                if (f[i][j] != 0)
                {
                    any = true;
                    System.out.print("f(" + i + "," + j + ":" + label[i][j]
                            + ")=" + f[i][j] + "@" + c[i][j] + "  ");
                    sum += f[i][j] * c[i][j];
                }
            if (any)
                System.out.println();
        }
        System.out.println("-->phi=" + sum);
    }
 
    // Print out cost matrix.
    void debugc()
    {
        for (int i = 0; i < N; i++)
        {
            boolean any = false;
            for (int j = 0; j < N; j++)
                if (c[i][j] != 0)
                {
                    any = true;
                    System.out.print("c(" + i + "," + j + ":" + label[i][j]
                            + ")=" + c[i][j] + "  ");
                }
            if (any)
                System.out.println();
        }
    }
}
 
class OpenCPP
{
    class Arc
    {
        String lab;
        int    u, v;
        float  cost;
 
        Arc(String lab, int u, int v, float cost)
        {
            this.lab = lab;
            this.u = u;
            this.v = v;
            this.cost = cost;
        }
    }
 
    Vector<Arc> arcs = new Vector<Arc>();
    int         N;
 
    OpenCPP(int vertices)
    {
        N = vertices;
    }
 
    OpenCPP addArc(String lab, int u, int v, float cost)
    {
        if (cost < 0)
            throw new Error("Graph has negative costs");
        arcs.addElement(new Arc(lab, u, v, cost));
        return this;
    }
 
    float printCPT(int startVertex)
    {
        ChinesePostmanProblem bestGraph = null, g;
        float bestCost = 0, cost;
        int i = 0;
        do
        {
            g = new ChinesePostmanProblem(N + 1);
            for (int j = 0; j < arcs.size(); j++)
            {
                Arc it = arcs.elementAt(j);
                g.addArc(it.lab, it.u, it.v, it.cost);
            }
            cost = g.basicCost;
            g.findUnbalanced(); // initialise g.neg on original graph
            g.addArc("'virtual start'", N, startVertex, cost);
            g.addArc("'virtual end'",
            // graph is Eulerian if neg.length=0
                    g.neg.length == 0 ? startVertex : g.neg[i], N, cost);
            g.solve();
            if (bestGraph == null || bestCost > g.cost())
            {
                bestCost = g.cost();
                bestGraph = g;
            }
        }
        while (++i < g.neg.length);
        System.out.println("Open CPT from " + startVertex
                + " (ignore virtual arcs)");
        bestGraph.printCPT(N);
        return cost + bestGraph.phi();
    }
 
    static void test()
    {
        OpenCPP G = new OpenCPP(4); // create a graph of four vertices
        // add the arcs for the example graph
        G.addArc("a", 0, 1, 1).addArc("b", 0, 2, 1).addArc("c", 1, 2, 1)
                .addArc("d", 1, 3, 1).addArc("e", 2, 3, 1).addArc("f", 3, 0, 1);
        int besti = 0;
        float bestCost = 0;
        for (int i = 0; i < 4; i++)
        {
            System.out.println("Solve from " + i);
            float c = G.printCPT(i);
            System.out.println("Cost = " + c);
            if (i == 0 || c < bestCost)
            {
                bestCost = c;
                besti = i;
            }
        }
        G.printCPT(besti);
        System.out.println("Cost = " + bestCost);
    }
}

Output:

$ javac ChinesePostmanProblem.java
$ java ChinesePostmanProblem
 
Take arc b from 0 to 2
Take arc e from 2 to 3
Take arc f from 3 to 0
Take arc a from 0 to 1
Take arc c from 1 to 2
Take arc e from 2 to 3
Take arc f from 3 to 0
Take arc a from 0 to 1
Take arc d from 1 to 3
Take arc f from 3 to 0
Cost = 10.0
Solve from 0
Open CPT from 0 (ignore virtual arcs)
Take arc 'virtual start' from 4 to 0
Take arc a from 0 to 1
Take arc d from 1 to 3
Take arc f from 3 to 0
Take arc a from 0 to 1
Take arc c from 1 to 2
Take arc e from 2 to 3
Take arc f from 3 to 0
Take arc b from 0 to 2
Take arc 'virtual end' from 2 to 4
Cost = 8.0
Solve from 1
Open CPT from 1 (ignore virtual arcs)
Take arc 'virtual start' from 4 to 1
Take arc d from 1 to 3
Take arc f from 3 to 0
Take arc a from 0 to 1
Take arc c from 1 to 2
Take arc e from 2 to 3
Take arc f from 3 to 0
Take arc b from 0 to 2
Take arc 'virtual end' from 2 to 4
Cost = 7.0
Solve from 2
Open CPT from 2 (ignore virtual arcs)
Take arc 'virtual start' from 4 to 2
Take arc e from 2 to 3
Take arc f from 3 to 0
Take arc a from 0 to 1
Take arc d from 1 to 3
Take arc f from 3 to 0
Take arc a from 0 to 1
Take arc c from 1 to 2
Take arc e from 2 to 3
Take arc f from 3 to 0
Take arc b from 0 to 2
Take arc 'virtual end' from 2 to 4
Cost = 10.0
Solve from 3
Open CPT from 3 (ignore virtual arcs)
Take arc 'virtual start' from 4 to 3
Take arc f from 3 to 0
Take arc a from 0 to 1
Take arc d from 1 to 3
Take arc f from 3 to 0
Take arc a from 0 to 1
Take arc c from 1 to 2
Take arc e from 2 to 3
Take arc f from 3 to 0
Take arc b from 0 to 2
Take arc 'virtual end' from 2 to 4
Cost = 9.0
Open CPT from 1 (ignore virtual arcs)
Take arc 'virtual start' from 4 to 1
Take arc d from 1 to 3
Take arc f from 3 to 0
Take arc a from 0 to 1
Take arc c from 1 to 2
Take arc e from 2 to 3
Take arc f from 3 to 0
Take arc b from 0 to 2
Take arc 'virtual end' from 2 to 4
Cost = 7.0

Related posts:

A Guide to EnumMap
How to Manually Authenticate User with Spring Security
Introduction to Eclipse Collections
Spring Boot - Admin Client
Logging a Reactive Sequence
Period and Duration in Java
Java Program to Check if any Graph is Possible to be Constructed for a Given Degree Sequence
Rate Limiting in Spring Cloud Netflix Zuul
Integer Constant Pool trong Java
Java Program to Implement Max Heap
Java Program to Check Whether an Undirected Graph Contains a Eulerian Cycle
The SpringJUnitConfig and SpringJUnitWebConfig Annotations in Spring 5
Create a Custom Exception in Java
Java Program to Check if a Given Binary Tree is an AVL Tree or Not
Java Program to Implement Hash Tables with Linear Probing
Ép kiểu trong Java (Type casting)
Function trong Java 8
Send email with authentication
Java Program to Describe the Representation of Graph using Incidence Matrix
Prevent Brute Force Authentication Attempts with Spring Security
Biểu thức Lambda trong Java 8 – Lambda Expressions
Java Concurrency Interview Questions and Answers
Java Program to Find the Nearest Neighbor Using K-D Tree Search
Java Program to Decode a Message Encoded Using Playfair Cipher
Entity To DTO Conversion for a Spring REST API
Java Program to Implement Coppersmith Freivald’s Algorithm
Calling Stored Procedures from Spring Data JPA Repositories
Java Program to Implement Double Order Traversal of a Binary Tree
Java Program to Implement Doubly Linked List
Java Program to Implement Knight’s Tour Problem
Java Program to Implement Miller Rabin Primality Test Algorithm
Hướng dẫn Java Design Pattern – Dependency Injection