This is a Java Program to implement 2D KD Tree and find the nearest neighbor for static input set. In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of binary space partitioning trees.
Here is the source code of the Java Program to Find Nearest Neighbor for Static Data Set. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a java program to find the nearest neighbor for the static data set
import java.io.IOException;
import java.util.Scanner;
class KDNodes
{
int axis;
double[] x;
int id;
boolean checked;
boolean orientation;
KDNodes Parent;
KDNodes Left;
KDNodes Right;
public KDNodes(double[] x0, int axis0)
{
x = new double[2];
axis = axis0;
for (int k = 0; k < 2; k++)
x[k] = x0[k];
Left = Right = Parent = null;
checked = false;
id = 0;
}
public KDNodes FindParent(double[] x0)
{
KDNodes parent = null;
KDNodes next = this;
int split;
while (next != null)
{
split = next.axis;
parent = next;
if (x0[split] > next.x[split])
next = next.Right;
else
next = next.Left;
}
return parent;
}
public KDNodes Insert(double[] p)
{
x = new double[2];
KDNodes parent = FindParent(p);
if (equal(p, parent.x, 2) == true)
return null;
KDNodes newNode = new KDNodes(p, parent.axis + 1 < 2 ? parent.axis + 1
: 0);
newNode.Parent = parent;
if (p[parent.axis] > parent.x[parent.axis])
{
parent.Right = newNode;
newNode.orientation = true; //
} else
{
parent.Left = newNode;
newNode.orientation = false; //
}
return newNode;
}
boolean equal(double[] x1, double[] x2, int dim)
{
for (int k = 0; k < dim; k++)
{
if (x1[k] != x2[k])
return false;
}
return true;
}
double distance2(double[] x1, double[] x2, int dim)
{
double S = 0;
for (int k = 0; k < dim; k++)
S += (x1[k] - x2[k]) * (x1[k] - x2[k]);
return S;
}
}
class KDTreeStatic
{
KDNodes Root;
int TimeStart, TimeFinish;
int CounterFreq;
double d_min;
KDNodes nearest_neighbour;
int KD_id;
int nList;
KDNodes CheckedNodes[];
int checked_nodes;
KDNodes List[];
double x_min[], x_max[];
boolean max_boundary[], min_boundary[];
int n_boundary;
public KDTreeStatic(int i)
{
Root = null;
KD_id = 1;
nList = 0;
List = new KDNodes[i];
CheckedNodes = new KDNodes[i];
max_boundary = new boolean[2];
min_boundary = new boolean[2];
x_min = new double[2];
x_max = new double[2];
}
public boolean add(double[] x)
{
if (nList >= 2000000 - 1)
return false; // can't add more points
if (Root == null)
{
Root = new KDNodes(x, 0);
Root.id = KD_id++;
List[nList++] = Root;
} else
{
KDNodes pNode;
if ((pNode = Root.Insert(x)) != null)
{
pNode.id = KD_id++;
List[nList++] = pNode;
}
}
return true;
}
public KDNodes find_nearest(double[] x)
{
if (Root == null)
return null;
checked_nodes = 0;
KDNodes parent = Root.FindParent(x);
nearest_neighbour = parent;
d_min = Root.distance2(x, parent.x, 2);
;
if (parent.equal(x, parent.x, 2) == true)
return nearest_neighbour;
search_parent(parent, x);
uncheck();
return nearest_neighbour;
}
public void check_subtree(KDNodes node, double[] x)
{
if ((node == null) || node.checked)
return;
CheckedNodes[checked_nodes++] = node;
node.checked = true;
set_bounding_cube(node, x);
int dim = node.axis;
double d = node.x[dim] - x[dim];
if (d * d > d_min)
{
if (node.x[dim] > x[dim])
check_subtree(node.Left, x);
else
check_subtree(node.Right, x);
} else
{
check_subtree(node.Left, x);
check_subtree(node.Right, x);
}
}
public void set_bounding_cube(KDNodes node, double[] x)
{
if (node == null)
return;
int d = 0;
double dx;
for (int k = 0; k < 2; k++)
{
dx = node.x[k] - x[k];
if (dx > 0)
{
dx *= dx;
if (!max_boundary[k])
{
if (dx > x_max[k])
x_max[k] = dx;
if (x_max[k] > d_min)
{
max_boundary[k] = true;
n_boundary++;
}
}
} else
{
dx *= dx;
if (!min_boundary[k])
{
if (dx > x_min[k])
x_min[k] = dx;
if (x_min[k] > d_min)
{
min_boundary[k] = true;
n_boundary++;
}
}
}
d += dx;
if (d > d_min)
return;
}
if (d < d_min)
{
d_min = d;
nearest_neighbour = node;
}
}
public KDNodes search_parent(KDNodes parent, double[] x)
{
for (int k = 0; k < 2; k++)
{
x_min[k] = x_max[k] = 0;
max_boundary[k] = min_boundary[k] = false; //
}
n_boundary = 0;
KDNodes search_root = parent;
while (parent != null && (n_boundary != 2 * 2))
{
check_subtree(parent, x);
search_root = parent;
parent = parent.Parent;
}
return search_root;
}
public void uncheck()
{
for (int n = 0; n < checked_nodes; n++)
CheckedNodes[n].checked = false;
}
}
public class Static_Nearest
{
public static void main(String args[]) throws IOException
{
int numpoints = 7;
Scanner sc = new Scanner(System.in);
KDTreeStatic kdt = new KDTreeStatic(numpoints);
double x[] = new double[2];
x[0] = 2.1;
x[1] = 4.3;
kdt.add(x);
x[0] = 3.3;
x[1] = 1.5;
kdt.add(x);
x[0] = 4.7;
x[1] = 11.1;
kdt.add(x);
x[0] = 5.0;
x[1] = 12.3;
kdt.add(x);
x[0] = 5.1;
x[1] = 1.2;
kdt.add(x);
x[0] = 12.1;
x[1] = 18.2;
kdt.add(x);
x[0] = 20.5;
x[1] = 17.9;
kdt.add(x);
System.out.println("Enter the co-ordinates of the point: <x> <y>");
double sx = sc.nextDouble();
double sy = sc.nextDouble();
double s[] = { sx, sy };
KDNodes kdn = kdt.find_nearest(s);
System.out.println("The nearest neighbor for the static data set is: ");
System.out.println("(" + kdn.x[0] + " , " + kdn.x[1] + ")");
sc.close();
}
}
Output:
$ javac Static_Nearest.java $ java Static_Nearest Enter the co-ordinates of the point: <x> <y> 9 9 The nearest neighbor for the static data set is: (4.7 , 11.1) Enter the co-ordinates of the point: <x> <y> 5 20 The nearest neighbor for the static data set is: (12.1 , 18.2)
Related posts:
Cài đặt và sử dụng Swagger UI
Working with Network Interfaces in Java
Java Program to Implement Selection Sort
Spring MVC and the @ModelAttribute Annotation
Hướng dẫn sử dụng Java Reflection
Enum trong java
Java Program to Implement Hash Tables chaining with Singly Linked Lists
Guide to Java 8’s Collectors
Java Program to Implement JobStateReasons API
The DAO with Spring and Hibernate
@Order in Spring
Java Program to Construct a Random Graph by the Method of Random Edge Selection
Stack Memory and Heap Space in Java
Java Program to Find the Number of Ways to Write a Number as the Sum of Numbers Smaller than Itself
Using JWT with Spring Security OAuth
Java Program to Perform the Shaker Sort
Java Program to Implement Network Flow Problem
Java 8 and Infinite Streams
Java Program to find the maximum subarray sum O(n^2) time(naive method)
Derived Query Methods in Spring Data JPA Repositories
Reactive WebSockets with Spring 5
Sorting Query Results with Spring Data
Performance Difference Between save() and saveAll() in Spring Data
Quick Guide on Loading Initial Data with Spring Boot
Java Program to Represent Graph Using Incidence List
Tìm hiểu cơ chế Lazy Evaluation của Stream trong Java 8
Java Program to Implement Hash Trie
Guide to UUID in Java
Giới thiệu Java Service Provider Interface (SPI) – Tạo các ứng dụng Java dễ mở rộng
String Operations with Java Streams
Java Program to Perform the Sorting Using Counting Sort
Introduction to Using FreeMarker in Spring MVC