This is a Java Program to implement 2D KD Tree and find the nearest neighbor for static input set. In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of binary space partitioning trees.
Here is the source code of the Java Program to Find Nearest Neighbor for Static Data Set. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a java program to find the nearest neighbor for the static data set import java.io.IOException; import java.util.Scanner; class KDNodes { int axis; double[] x; int id; boolean checked; boolean orientation; KDNodes Parent; KDNodes Left; KDNodes Right; public KDNodes(double[] x0, int axis0) { x = new double[2]; axis = axis0; for (int k = 0; k < 2; k++) x[k] = x0[k]; Left = Right = Parent = null; checked = false; id = 0; } public KDNodes FindParent(double[] x0) { KDNodes parent = null; KDNodes next = this; int split; while (next != null) { split = next.axis; parent = next; if (x0[split] > next.x[split]) next = next.Right; else next = next.Left; } return parent; } public KDNodes Insert(double[] p) { x = new double[2]; KDNodes parent = FindParent(p); if (equal(p, parent.x, 2) == true) return null; KDNodes newNode = new KDNodes(p, parent.axis + 1 < 2 ? parent.axis + 1 : 0); newNode.Parent = parent; if (p[parent.axis] > parent.x[parent.axis]) { parent.Right = newNode; newNode.orientation = true; // } else { parent.Left = newNode; newNode.orientation = false; // } return newNode; } boolean equal(double[] x1, double[] x2, int dim) { for (int k = 0; k < dim; k++) { if (x1[k] != x2[k]) return false; } return true; } double distance2(double[] x1, double[] x2, int dim) { double S = 0; for (int k = 0; k < dim; k++) S += (x1[k] - x2[k]) * (x1[k] - x2[k]); return S; } } class KDTreeStatic { KDNodes Root; int TimeStart, TimeFinish; int CounterFreq; double d_min; KDNodes nearest_neighbour; int KD_id; int nList; KDNodes CheckedNodes[]; int checked_nodes; KDNodes List[]; double x_min[], x_max[]; boolean max_boundary[], min_boundary[]; int n_boundary; public KDTreeStatic(int i) { Root = null; KD_id = 1; nList = 0; List = new KDNodes[i]; CheckedNodes = new KDNodes[i]; max_boundary = new boolean[2]; min_boundary = new boolean[2]; x_min = new double[2]; x_max = new double[2]; } public boolean add(double[] x) { if (nList >= 2000000 - 1) return false; // can't add more points if (Root == null) { Root = new KDNodes(x, 0); Root.id = KD_id++; List[nList++] = Root; } else { KDNodes pNode; if ((pNode = Root.Insert(x)) != null) { pNode.id = KD_id++; List[nList++] = pNode; } } return true; } public KDNodes find_nearest(double[] x) { if (Root == null) return null; checked_nodes = 0; KDNodes parent = Root.FindParent(x); nearest_neighbour = parent; d_min = Root.distance2(x, parent.x, 2); ; if (parent.equal(x, parent.x, 2) == true) return nearest_neighbour; search_parent(parent, x); uncheck(); return nearest_neighbour; } public void check_subtree(KDNodes node, double[] x) { if ((node == null) || node.checked) return; CheckedNodes[checked_nodes++] = node; node.checked = true; set_bounding_cube(node, x); int dim = node.axis; double d = node.x[dim] - x[dim]; if (d * d > d_min) { if (node.x[dim] > x[dim]) check_subtree(node.Left, x); else check_subtree(node.Right, x); } else { check_subtree(node.Left, x); check_subtree(node.Right, x); } } public void set_bounding_cube(KDNodes node, double[] x) { if (node == null) return; int d = 0; double dx; for (int k = 0; k < 2; k++) { dx = node.x[k] - x[k]; if (dx > 0) { dx *= dx; if (!max_boundary[k]) { if (dx > x_max[k]) x_max[k] = dx; if (x_max[k] > d_min) { max_boundary[k] = true; n_boundary++; } } } else { dx *= dx; if (!min_boundary[k]) { if (dx > x_min[k]) x_min[k] = dx; if (x_min[k] > d_min) { min_boundary[k] = true; n_boundary++; } } } d += dx; if (d > d_min) return; } if (d < d_min) { d_min = d; nearest_neighbour = node; } } public KDNodes search_parent(KDNodes parent, double[] x) { for (int k = 0; k < 2; k++) { x_min[k] = x_max[k] = 0; max_boundary[k] = min_boundary[k] = false; // } n_boundary = 0; KDNodes search_root = parent; while (parent != null && (n_boundary != 2 * 2)) { check_subtree(parent, x); search_root = parent; parent = parent.Parent; } return search_root; } public void uncheck() { for (int n = 0; n < checked_nodes; n++) CheckedNodes[n].checked = false; } } public class Static_Nearest { public static void main(String args[]) throws IOException { int numpoints = 7; Scanner sc = new Scanner(System.in); KDTreeStatic kdt = new KDTreeStatic(numpoints); double x[] = new double[2]; x[0] = 2.1; x[1] = 4.3; kdt.add(x); x[0] = 3.3; x[1] = 1.5; kdt.add(x); x[0] = 4.7; x[1] = 11.1; kdt.add(x); x[0] = 5.0; x[1] = 12.3; kdt.add(x); x[0] = 5.1; x[1] = 1.2; kdt.add(x); x[0] = 12.1; x[1] = 18.2; kdt.add(x); x[0] = 20.5; x[1] = 17.9; kdt.add(x); System.out.println("Enter the co-ordinates of the point: <x> <y>"); double sx = sc.nextDouble(); double sy = sc.nextDouble(); double s[] = { sx, sy }; KDNodes kdn = kdt.find_nearest(s); System.out.println("The nearest neighbor for the static data set is: "); System.out.println("(" + kdn.x[0] + " , " + kdn.x[1] + ")"); sc.close(); } }
Output:
$ javac Static_Nearest.java $ java Static_Nearest Enter the co-ordinates of the point: <x> <y> 9 9 The nearest neighbor for the static data set is: (4.7 , 11.1) Enter the co-ordinates of the point: <x> <y> 5 20 The nearest neighbor for the static data set is: (12.1 , 18.2)
Related posts:
Java Program to Implement TreeSet API
Comparing Arrays in Java
Circular Dependencies in Spring
Calling Stored Procedures from Spring Data JPA Repositories
Java Program to Implement Bit Array
Spring Boot - Rest Template
Java Program to Implement WeakHashMap API
Tổng quan về ngôn ngữ lập trình java
Java Program to Find Minimum Number of Edges to Cut to make the Graph Disconnected
Getting Started with Custom Deserialization in Jackson
Spring Security with Maven
Java Program to Implement Hash Tables Chaining with Doubly Linked Lists
Converting String to Stream of chars
Spring Cloud Bus
Java Program to Perform Naive String Matching
Introduction to Spring Security Expressions
Java Program to Implement Floyd Cycle Algorithm
Java 8 – Powerful Comparison with Lambdas
Java Program to Perform Postorder Non-Recursive Traversal of a Given Binary Tree
Filtering a Stream of Optionals in Java
Java Program to Implement Hash Tree
Check if a String is a Palindrome in Java
Java Program to Compute Cross Product of Two Vectors
Java Program to Check whether Graph is a Bipartite using DFS
Spring Boot - Cloud Configuration Client
Java Program to Delete a Particular Node in a Tree Without Using Recursion
Java Program to Implement AttributeList API
Converting String to Stream of chars
Giới thiệu HATEOAS
Spring Boot - Securing Web Applications
Guide to the Fork/Join Framework in Java
Spring Cloud – Tracing Services with Zipkin