This is a Java Program to implement 2D KD Tree and find the nearest neighbor for static input set. In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of binary space partitioning trees.
Here is the source code of the Java Program to Find Nearest Neighbor for Static Data Set. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a java program to find the nearest neighbor for the static data set import java.io.IOException; import java.util.Scanner; class KDNodes { int axis; double[] x; int id; boolean checked; boolean orientation; KDNodes Parent; KDNodes Left; KDNodes Right; public KDNodes(double[] x0, int axis0) { x = new double[2]; axis = axis0; for (int k = 0; k < 2; k++) x[k] = x0[k]; Left = Right = Parent = null; checked = false; id = 0; } public KDNodes FindParent(double[] x0) { KDNodes parent = null; KDNodes next = this; int split; while (next != null) { split = next.axis; parent = next; if (x0[split] > next.x[split]) next = next.Right; else next = next.Left; } return parent; } public KDNodes Insert(double[] p) { x = new double[2]; KDNodes parent = FindParent(p); if (equal(p, parent.x, 2) == true) return null; KDNodes newNode = new KDNodes(p, parent.axis + 1 < 2 ? parent.axis + 1 : 0); newNode.Parent = parent; if (p[parent.axis] > parent.x[parent.axis]) { parent.Right = newNode; newNode.orientation = true; // } else { parent.Left = newNode; newNode.orientation = false; // } return newNode; } boolean equal(double[] x1, double[] x2, int dim) { for (int k = 0; k < dim; k++) { if (x1[k] != x2[k]) return false; } return true; } double distance2(double[] x1, double[] x2, int dim) { double S = 0; for (int k = 0; k < dim; k++) S += (x1[k] - x2[k]) * (x1[k] - x2[k]); return S; } } class KDTreeStatic { KDNodes Root; int TimeStart, TimeFinish; int CounterFreq; double d_min; KDNodes nearest_neighbour; int KD_id; int nList; KDNodes CheckedNodes[]; int checked_nodes; KDNodes List[]; double x_min[], x_max[]; boolean max_boundary[], min_boundary[]; int n_boundary; public KDTreeStatic(int i) { Root = null; KD_id = 1; nList = 0; List = new KDNodes[i]; CheckedNodes = new KDNodes[i]; max_boundary = new boolean[2]; min_boundary = new boolean[2]; x_min = new double[2]; x_max = new double[2]; } public boolean add(double[] x) { if (nList >= 2000000 - 1) return false; // can't add more points if (Root == null) { Root = new KDNodes(x, 0); Root.id = KD_id++; List[nList++] = Root; } else { KDNodes pNode; if ((pNode = Root.Insert(x)) != null) { pNode.id = KD_id++; List[nList++] = pNode; } } return true; } public KDNodes find_nearest(double[] x) { if (Root == null) return null; checked_nodes = 0; KDNodes parent = Root.FindParent(x); nearest_neighbour = parent; d_min = Root.distance2(x, parent.x, 2); ; if (parent.equal(x, parent.x, 2) == true) return nearest_neighbour; search_parent(parent, x); uncheck(); return nearest_neighbour; } public void check_subtree(KDNodes node, double[] x) { if ((node == null) || node.checked) return; CheckedNodes[checked_nodes++] = node; node.checked = true; set_bounding_cube(node, x); int dim = node.axis; double d = node.x[dim] - x[dim]; if (d * d > d_min) { if (node.x[dim] > x[dim]) check_subtree(node.Left, x); else check_subtree(node.Right, x); } else { check_subtree(node.Left, x); check_subtree(node.Right, x); } } public void set_bounding_cube(KDNodes node, double[] x) { if (node == null) return; int d = 0; double dx; for (int k = 0; k < 2; k++) { dx = node.x[k] - x[k]; if (dx > 0) { dx *= dx; if (!max_boundary[k]) { if (dx > x_max[k]) x_max[k] = dx; if (x_max[k] > d_min) { max_boundary[k] = true; n_boundary++; } } } else { dx *= dx; if (!min_boundary[k]) { if (dx > x_min[k]) x_min[k] = dx; if (x_min[k] > d_min) { min_boundary[k] = true; n_boundary++; } } } d += dx; if (d > d_min) return; } if (d < d_min) { d_min = d; nearest_neighbour = node; } } public KDNodes search_parent(KDNodes parent, double[] x) { for (int k = 0; k < 2; k++) { x_min[k] = x_max[k] = 0; max_boundary[k] = min_boundary[k] = false; // } n_boundary = 0; KDNodes search_root = parent; while (parent != null && (n_boundary != 2 * 2)) { check_subtree(parent, x); search_root = parent; parent = parent.Parent; } return search_root; } public void uncheck() { for (int n = 0; n < checked_nodes; n++) CheckedNodes[n].checked = false; } } public class Static_Nearest { public static void main(String args[]) throws IOException { int numpoints = 7; Scanner sc = new Scanner(System.in); KDTreeStatic kdt = new KDTreeStatic(numpoints); double x[] = new double[2]; x[0] = 2.1; x[1] = 4.3; kdt.add(x); x[0] = 3.3; x[1] = 1.5; kdt.add(x); x[0] = 4.7; x[1] = 11.1; kdt.add(x); x[0] = 5.0; x[1] = 12.3; kdt.add(x); x[0] = 5.1; x[1] = 1.2; kdt.add(x); x[0] = 12.1; x[1] = 18.2; kdt.add(x); x[0] = 20.5; x[1] = 17.9; kdt.add(x); System.out.println("Enter the co-ordinates of the point: <x> <y>"); double sx = sc.nextDouble(); double sy = sc.nextDouble(); double s[] = { sx, sy }; KDNodes kdn = kdt.find_nearest(s); System.out.println("The nearest neighbor for the static data set is: "); System.out.println("(" + kdn.x[0] + " , " + kdn.x[1] + ")"); sc.close(); } }
Output:
$ javac Static_Nearest.java $ java Static_Nearest Enter the co-ordinates of the point: <x> <y> 9 9 The nearest neighbor for the static data set is: (4.7 , 11.1) Enter the co-ordinates of the point: <x> <y> 5 20 The nearest neighbor for the static data set is: (12.1 , 18.2)
Related posts:
A Guide to ConcurrentMap
Filtering and Transforming Collections in Guava
Spring MVC and the @ModelAttribute Annotation
Java Program to Implement Tarjan Algorithm
Spring Cloud AWS – Messaging Support
Java Program to Implement First Fit Decreasing for 1-D Objects and M Bins
Java Program to Find the Nearest Neighbor Using K-D Tree Search
Mockito and JUnit 5 – Using ExtendWith
Adding a Newline Character to a String in Java
Guide to java.util.concurrent.BlockingQueue
Java Program to Find SSSP (Single Source Shortest Path) in DAG (Directed Acyclic Graphs)
A Guide to @RepeatedTest in Junit 5
Java Program to Check Cycle in a Graph using Topological Sort
Java Program to Implement Leftist Heap
Introduction to Spring Data REST
OAuth2 for a Spring REST API – Handle the Refresh Token in Angular
HttpClient 4 – Send Custom Cookie
XML-Based Injection in Spring
Spring Webflux and CORS
Java Program to Implement Knight’s Tour Problem
Java Program to Implement ArrayBlockingQueue API
The Basics of Java Security
Java Program to Implement Threaded Binary Tree
A Guide to Queries in Spring Data MongoDB
Finding Max/Min of a List or Collection
How to Use if/else Logic in Java 8 Streams
Java Program to Create a Balanced Binary Tree of the Incoming Data
Java 8 Predicate Chain
Apache Commons Collections BidiMap
Chương trình Java đầu tiên
Unsatisfied Dependency in Spring
Create a Custom Exception in Java