This Java program,implements Best-First Search.Best-first search is a search algorithm which explores a graph by expanding the most promising node chosen according to a specified rule.
Judea Pearl described best-first search as estimating the promise of node n by a “heuristic evaluation function which, in general, may depend on the description of n, the description of the goal, the information gathered by the search up to that point, and most important, on any extra knowledge about the problem domain.
Here is the source code of the Java program to implements Best-First Search. The Java program is successfully compiled and run on a Linux system. The program output is also shown below.
import java.util.Comparator; import java.util.InputMismatchException; import java.util.PriorityQueue; import java.util.Scanner; public class BestFirstSearch { private PriorityQueue<Vertex> priorityQueue; private int heuristicvalues[]; private int numberOfNodes; public static final int MAX_VALUE = 999; public BestFirstSearch(int numberOfNodes) { this.numberOfNodes = numberOfNodes; this.priorityQueue = new PriorityQueue<Vertex>(this.numberOfNodes, new Vertex()); } public void bestFirstSearch(int adjacencyMatrix[][], int[] heuristicvalues,int source) { int evaluationNode; int destinationNode; int visited[] = new int [numberOfNodes + 1]; this.heuristicvalues = heuristicvalues; priorityQueue.add(new Vertex(source, this.heuristicvalues)); visited = 1; while (!priorityQueue.isEmpty()) { evaluationNode = getNodeWithMinimumHeuristicValue(); destinationNode = 1; System.out.print(evaluationNode + "\t"); while (destinationNode <= numberOfNodes) { Vertex vertex = new Vertex(destinationNode,this.heuristicvalues[destinationNode]); if ((adjacencyMatrix[evaluationNode][destinationNode] != MAX_VALUE && evaluationNode != destinationNode)&& visited[destinationNode] == 0) { priorityQueue.add(vertex); visited[destinationNode] = 1; } destinationNode++; } } } private int getNodeWithMinimumHeuristicValue() { Vertex vertex = priorityQueue.remove(); return vertex.node; } public static void main(String... arg) { int adjacency_matrix[][]; int number_of_vertices; int source = 0; int heuristicvalues[]; Scanner scan = new Scanner(System.in); try { System.out.println("Enter the number of vertices"); number_of_vertices = scan.nextInt(); adjacency_matrix = new int[number_of_vertices + 1][number_of_vertices + 1]; heuristicvalues = new int[number_of_vertices + 1]; System.out.println("Enter the Weighted Matrix for the graph"); for (int i = 1; i <= number_of_vertices; i++) { for (int j = 1; j <= number_of_vertices; j++) { adjacency_matrix[i][j] = scan.nextInt(); if (i == j) { adjacency_matrix[i][j] = 0; continue; } if (adjacency_matrix[i][j] == 0) { adjacency_matrix[i][j] = MAX_VALUE; } } } for (int i = 1; i <= number_of_vertices; i++) { for (int j = 1; j <= number_of_vertices; j++) { if (adjacency_matrix[i][j] == 1 && adjacency_matrix[j][i] == 0) { adjacency_matrix[j][i] = 1; } } } System.out.println("Enter the heuristic values of the nodes"); for (int vertex = 1; vertex <= number_of_vertices; vertex++) { System.out.print(vertex + "."); heuristicvalues[vertex] = scan.nextInt(); System.out.println(); } System.out.println("Enter the source "); source = scan.nextInt(); System.out.println("The graph is explored as follows"); BestFirstSearch bestFirstSearch = new BestFirstSearch(number_of_vertices); bestFirstSearch.bestFirstSearch(adjacency_matrix, heuristicvalues,source); } catch (InputMismatchException inputMismatch) { System.out.println("Wrong Input Format"); } scan.close(); } } class Vertex implements Comparator<Vertex> { public int heuristicvalue; public int node; public Vertex(int node, int heuristicvalue) { this.heuristicvalue = heuristicvalue; this.node = node; } public Vertex() { } @Override public int compare(Vertex vertex1, Vertex vertex2) { if (vertex1.heuristicvalue < vertex2.heuristicvalue) return -1; if (vertex1.heuristicvalue > vertex2.heuristicvalue) return 1; return 0; } @Override public boolean equals(Object obj) { if (obj instanceof Vertex) { Vertex node = (Vertex) obj; if (this.node == node.node) { return true; } } return false; } }
$javac BestFirstSearch.java $java BestFirstSearch Enter the number of vertices 6 Enter the Weighted Matrix for the graph 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 1 1 0 0 0 0 Enter the heuristic values of the nodes 1.2 2.3 3.1 4.4 5.0 6.10 Enter the source 6 The graph is explored as follows 6 1 3 2 5 4
Related posts:
Guide to Java 8’s Collectors
Giới thiệu luồng vào ra (I/O) trong Java
Java Program to Implement Branch and Bound Method to Perform a Combinatorial Search
Consuming RESTful Web Services
Quick Guide to the Java StringTokenizer
Examine the internal DNS cache
Java program to Implement Tree Set
Java Program to Implement AVL Tree
Java Program to Check the Connectivity of Graph Using DFS
Sao chép các phần tử của một mảng sang mảng khác như thế nào?
Java String Conversions
Java Program to Generate a Sequence of N Characters for a Given Specific Case
Java Program to Find Basis and Dimension of a Matrix
Java – Create a File
Java Program to Check whether Graph is a Bipartite using 2 Color Algorithm
Java Program to Implement WeakHashMap API
Java Program to Implement ScapeGoat Tree
Java Program to Implement Heap Sort Using Library Functions
Updating your Password
Tránh lỗi ConcurrentModificationException trong Java như thế nào?
Use Liquibase to Safely Evolve Your Database Schema
Spring Boot - Tomcat Port Number
Java Program to Describe the Representation of Graph using Incidence List
Spring Boot - Admin Client
Spring Boot - Building RESTful Web Services
Assertions in JUnit 4 and JUnit 5
Spring RestTemplate Error Handling
Working with Network Interfaces in Java
Java Program to implement Array Deque
Java – Try with Resources
Kiểu dữ liệu Ngày Giờ (Date Time) trong java
How to Delay Code Execution in Java