This Java program,implements Best-First Search.Best-first search is a search algorithm which explores a graph by expanding the most promising node chosen according to a specified rule.
Judea Pearl described best-first search as estimating the promise of node n by a “heuristic evaluation function which, in general, may depend on the description of n, the description of the goal, the information gathered by the search up to that point, and most important, on any extra knowledge about the problem domain.
Here is the source code of the Java program to implements Best-First Search. The Java program is successfully compiled and run on a Linux system. The program output is also shown below.
import java.util.Comparator; import java.util.InputMismatchException; import java.util.PriorityQueue; import java.util.Scanner; public class BestFirstSearch { private PriorityQueue<Vertex> priorityQueue; private int heuristicvalues[]; private int numberOfNodes; public static final int MAX_VALUE = 999; public BestFirstSearch(int numberOfNodes) { this.numberOfNodes = numberOfNodes; this.priorityQueue = new PriorityQueue<Vertex>(this.numberOfNodes, new Vertex()); } public void bestFirstSearch(int adjacencyMatrix[][], int[] heuristicvalues,int source) { int evaluationNode; int destinationNode; int visited[] = new int [numberOfNodes + 1]; this.heuristicvalues = heuristicvalues; priorityQueue.add(new Vertex(source, this.heuristicvalues)); visited = 1; while (!priorityQueue.isEmpty()) { evaluationNode = getNodeWithMinimumHeuristicValue(); destinationNode = 1; System.out.print(evaluationNode + "\t"); while (destinationNode <= numberOfNodes) { Vertex vertex = new Vertex(destinationNode,this.heuristicvalues[destinationNode]); if ((adjacencyMatrix[evaluationNode][destinationNode] != MAX_VALUE && evaluationNode != destinationNode)&& visited[destinationNode] == 0) { priorityQueue.add(vertex); visited[destinationNode] = 1; } destinationNode++; } } } private int getNodeWithMinimumHeuristicValue() { Vertex vertex = priorityQueue.remove(); return vertex.node; } public static void main(String... arg) { int adjacency_matrix[][]; int number_of_vertices; int source = 0; int heuristicvalues[]; Scanner scan = new Scanner(System.in); try { System.out.println("Enter the number of vertices"); number_of_vertices = scan.nextInt(); adjacency_matrix = new int[number_of_vertices + 1][number_of_vertices + 1]; heuristicvalues = new int[number_of_vertices + 1]; System.out.println("Enter the Weighted Matrix for the graph"); for (int i = 1; i <= number_of_vertices; i++) { for (int j = 1; j <= number_of_vertices; j++) { adjacency_matrix[i][j] = scan.nextInt(); if (i == j) { adjacency_matrix[i][j] = 0; continue; } if (adjacency_matrix[i][j] == 0) { adjacency_matrix[i][j] = MAX_VALUE; } } } for (int i = 1; i <= number_of_vertices; i++) { for (int j = 1; j <= number_of_vertices; j++) { if (adjacency_matrix[i][j] == 1 && adjacency_matrix[j][i] == 0) { adjacency_matrix[j][i] = 1; } } } System.out.println("Enter the heuristic values of the nodes"); for (int vertex = 1; vertex <= number_of_vertices; vertex++) { System.out.print(vertex + "."); heuristicvalues[vertex] = scan.nextInt(); System.out.println(); } System.out.println("Enter the source "); source = scan.nextInt(); System.out.println("The graph is explored as follows"); BestFirstSearch bestFirstSearch = new BestFirstSearch(number_of_vertices); bestFirstSearch.bestFirstSearch(adjacency_matrix, heuristicvalues,source); } catch (InputMismatchException inputMismatch) { System.out.println("Wrong Input Format"); } scan.close(); } } class Vertex implements Comparator<Vertex> { public int heuristicvalue; public int node; public Vertex(int node, int heuristicvalue) { this.heuristicvalue = heuristicvalue; this.node = node; } public Vertex() { } @Override public int compare(Vertex vertex1, Vertex vertex2) { if (vertex1.heuristicvalue < vertex2.heuristicvalue) return -1; if (vertex1.heuristicvalue > vertex2.heuristicvalue) return 1; return 0; } @Override public boolean equals(Object obj) { if (obj instanceof Vertex) { Vertex node = (Vertex) obj; if (this.node == node.node) { return true; } } return false; } }
$javac BestFirstSearch.java $java BestFirstSearch Enter the number of vertices 6 Enter the Weighted Matrix for the graph 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 1 1 0 0 0 0 Enter the heuristic values of the nodes 1.2 2.3 3.1 4.4 5.0 6.10 Enter the source 6 The graph is explored as follows 6 1 3 2 5 4
Related posts:
Overview of the java.util.concurrent
A Guide To UDP In Java
JUnit 5 for Kotlin Developers
Java Program to Implement HashMap API
Java Streams vs Vavr Streams
Get the workstation name or IP
Spring RestTemplate Request/Response Logging
Spring Boot - Building RESTful Web Services
DynamoDB in a Spring Boot Application Using Spring Data
Consuming RESTful Web Services
Xử lý ngoại lệ đối với trường hợp ghi đè phương thức trong java
Java Program to Implement Counting Sort
Java Program to Create a Random Graph Using Random Edge Generation
Hướng dẫn Java Design Pattern – Template Method
Allow user:password in URL
Java Program to Search Number Using Divide and Conquer with the Aid of Fibonacci Numbers
Java Program to Implement the String Search Algorithm for Short Text Sizes
Tránh lỗi NullPointerException trong Java như thế nào?
An Intro to Spring Cloud Vault
Ép kiểu trong Java (Type casting)
Mapping a Dynamic JSON Object with Jackson
Java Program to Implement the Binary Counting Method to Generate Subsets of a Set
Thực thi nhiều tác vụ cùng lúc như thế nào trong Java?
Giới thiệu thư viện Apache Commons Chain
Debug a JavaMail Program
Java Program to Implement Hash Tables Chaining with Binary Trees
Immutable ArrayList in Java
Guide to java.util.Formatter
Java Program to implement Circular Buffer
Java Program to Represent Graph Using Incidence Matrix
Hướng dẫn Java Design Pattern – Dependency Injection
Send an email using the SMTP protocol