This Java program,implements Best-First Search.Best-first search is a search algorithm which explores a graph by expanding the most promising node chosen according to a specified rule.
Judea Pearl described best-first search as estimating the promise of node n by a “heuristic evaluation function which, in general, may depend on the description of n, the description of the goal, the information gathered by the search up to that point, and most important, on any extra knowledge about the problem domain.
Here is the source code of the Java program to implements Best-First Search. The Java program is successfully compiled and run on a Linux system. The program output is also shown below.
import java.util.Comparator;
import java.util.InputMismatchException;
import java.util.PriorityQueue;
import java.util.Scanner;
public class BestFirstSearch
{
private PriorityQueue<Vertex> priorityQueue;
private int heuristicvalues[];
private int numberOfNodes;
public static final int MAX_VALUE = 999;
public BestFirstSearch(int numberOfNodes)
{
this.numberOfNodes = numberOfNodes;
this.priorityQueue = new PriorityQueue<Vertex>(this.numberOfNodes,
new Vertex());
}
public void bestFirstSearch(int adjacencyMatrix[][], int[] heuristicvalues,int source)
{
int evaluationNode;
int destinationNode;
int visited[] = new int [numberOfNodes + 1];
this.heuristicvalues = heuristicvalues;
priorityQueue.add(new Vertex(source, this.heuristicvalues));
visited = 1;
while (!priorityQueue.isEmpty())
{
evaluationNode = getNodeWithMinimumHeuristicValue();
destinationNode = 1;
System.out.print(evaluationNode + "\t");
while (destinationNode <= numberOfNodes)
{
Vertex vertex = new Vertex(destinationNode,this.heuristicvalues[destinationNode]);
if ((adjacencyMatrix[evaluationNode][destinationNode] != MAX_VALUE
&& evaluationNode != destinationNode)&& visited[destinationNode] == 0)
{
priorityQueue.add(vertex);
visited[destinationNode] = 1;
}
destinationNode++;
}
}
}
private int getNodeWithMinimumHeuristicValue()
{
Vertex vertex = priorityQueue.remove();
return vertex.node;
}
public static void main(String... arg)
{
int adjacency_matrix[][];
int number_of_vertices;
int source = 0;
int heuristicvalues[];
Scanner scan = new Scanner(System.in);
try
{
System.out.println("Enter the number of vertices");
number_of_vertices = scan.nextInt();
adjacency_matrix = new int[number_of_vertices + 1][number_of_vertices + 1];
heuristicvalues = new int[number_of_vertices + 1];
System.out.println("Enter the Weighted Matrix for the graph");
for (int i = 1; i <= number_of_vertices; i++)
{
for (int j = 1; j <= number_of_vertices; j++)
{
adjacency_matrix[i][j] = scan.nextInt();
if (i == j)
{
adjacency_matrix[i][j] = 0;
continue;
}
if (adjacency_matrix[i][j] == 0)
{
adjacency_matrix[i][j] = MAX_VALUE;
}
}
}
for (int i = 1; i <= number_of_vertices; i++)
{
for (int j = 1; j <= number_of_vertices; j++)
{
if (adjacency_matrix[i][j] == 1 && adjacency_matrix[j][i] == 0)
{
adjacency_matrix[j][i] = 1;
}
}
}
System.out.println("Enter the heuristic values of the nodes");
for (int vertex = 1; vertex <= number_of_vertices; vertex++)
{
System.out.print(vertex + ".");
heuristicvalues[vertex] = scan.nextInt();
System.out.println();
}
System.out.println("Enter the source ");
source = scan.nextInt();
System.out.println("The graph is explored as follows");
BestFirstSearch bestFirstSearch = new BestFirstSearch(number_of_vertices);
bestFirstSearch.bestFirstSearch(adjacency_matrix, heuristicvalues,source);
} catch (InputMismatchException inputMismatch)
{
System.out.println("Wrong Input Format");
}
scan.close();
}
}
class Vertex implements Comparator<Vertex>
{
public int heuristicvalue;
public int node;
public Vertex(int node, int heuristicvalue)
{
this.heuristicvalue = heuristicvalue;
this.node = node;
}
public Vertex()
{
}
@Override
public int compare(Vertex vertex1, Vertex vertex2)
{
if (vertex1.heuristicvalue < vertex2.heuristicvalue)
return -1;
if (vertex1.heuristicvalue > vertex2.heuristicvalue)
return 1;
return 0;
}
@Override
public boolean equals(Object obj)
{
if (obj instanceof Vertex)
{
Vertex node = (Vertex) obj;
if (this.node == node.node)
{
return true;
}
}
return false;
}
}
$javac BestFirstSearch.java $java BestFirstSearch Enter the number of vertices 6 Enter the Weighted Matrix for the graph 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 1 1 0 0 0 0 Enter the heuristic values of the nodes 1.2 2.3 3.1 4.4 5.0 6.10 Enter the source 6 The graph is explored as follows 6 1 3 2 5 4
Related posts:
Guide to @ConfigurationProperties in Spring Boot
Java Program to Check Whether a Given Point is in a Given Polygon
What is Thread-Safety and How to Achieve it?
Compact Strings in Java 9
Java Program to Implement Slicker Algorithm that avoids Triangulation to Find Area of a Polygon
New Features in Java 11
SOAP Web service: Upload và Download file sử dụng MTOM trong JAX-WS
Why String is Immutable in Java?
Introduction to the Java NIO2 File API
“Stream has already been operated upon or closed” Exception in Java
Hướng dẫn Java Design Pattern – Observer
ETL with Spring Cloud Data Flow
Spring AMQP in Reactive Applications
Java Program to Implement First Fit Decreasing for 1-D Objects and M Bins
Phương thức forEach() trong java 8
Java Program to Generate Date Between Given Range
Java Program to Implement PrinterStateReasons API
Function trong Java 8
Java Program to Implement Segment Tree
New Features in Java 9
Java Program to Implement Fibonacci Heap
Java Program to Compare Binary and Sequential Search
Java Program to Implement Suffix Array
A Custom Data Binder in Spring MVC
Comparing Dates in Java
Hướng dẫn sử dụng Java Reflection
XML Serialization and Deserialization with Jackson
Convert String to Byte Array and Reverse in Java
Spring Boot with Multiple SQL Import Files
Guide to java.util.concurrent.BlockingQueue
Spring Boot - Quick Start
REST Web service: HTTP Status Code và xử lý ngoại lệ RESTful web service với Jersey 2.x