This Java program,implements Best-First Search.Best-first search is a search algorithm which explores a graph by expanding the most promising node chosen according to a specified rule.
Judea Pearl described best-first search as estimating the promise of node n by a “heuristic evaluation function which, in general, may depend on the description of n, the description of the goal, the information gathered by the search up to that point, and most important, on any extra knowledge about the problem domain.
Here is the source code of the Java program to implements Best-First Search. The Java program is successfully compiled and run on a Linux system. The program output is also shown below.
import java.util.Comparator; import java.util.InputMismatchException; import java.util.PriorityQueue; import java.util.Scanner; public class BestFirstSearch { private PriorityQueue<Vertex> priorityQueue; private int heuristicvalues[]; private int numberOfNodes; public static final int MAX_VALUE = 999; public BestFirstSearch(int numberOfNodes) { this.numberOfNodes = numberOfNodes; this.priorityQueue = new PriorityQueue<Vertex>(this.numberOfNodes, new Vertex()); } public void bestFirstSearch(int adjacencyMatrix[][], int[] heuristicvalues,int source) { int evaluationNode; int destinationNode; int visited[] = new int [numberOfNodes + 1]; this.heuristicvalues = heuristicvalues; priorityQueue.add(new Vertex(source, this.heuristicvalues)); visited = 1; while (!priorityQueue.isEmpty()) { evaluationNode = getNodeWithMinimumHeuristicValue(); destinationNode = 1; System.out.print(evaluationNode + "\t"); while (destinationNode <= numberOfNodes) { Vertex vertex = new Vertex(destinationNode,this.heuristicvalues[destinationNode]); if ((adjacencyMatrix[evaluationNode][destinationNode] != MAX_VALUE && evaluationNode != destinationNode)&& visited[destinationNode] == 0) { priorityQueue.add(vertex); visited[destinationNode] = 1; } destinationNode++; } } } private int getNodeWithMinimumHeuristicValue() { Vertex vertex = priorityQueue.remove(); return vertex.node; } public static void main(String... arg) { int adjacency_matrix[][]; int number_of_vertices; int source = 0; int heuristicvalues[]; Scanner scan = new Scanner(System.in); try { System.out.println("Enter the number of vertices"); number_of_vertices = scan.nextInt(); adjacency_matrix = new int[number_of_vertices + 1][number_of_vertices + 1]; heuristicvalues = new int[number_of_vertices + 1]; System.out.println("Enter the Weighted Matrix for the graph"); for (int i = 1; i <= number_of_vertices; i++) { for (int j = 1; j <= number_of_vertices; j++) { adjacency_matrix[i][j] = scan.nextInt(); if (i == j) { adjacency_matrix[i][j] = 0; continue; } if (adjacency_matrix[i][j] == 0) { adjacency_matrix[i][j] = MAX_VALUE; } } } for (int i = 1; i <= number_of_vertices; i++) { for (int j = 1; j <= number_of_vertices; j++) { if (adjacency_matrix[i][j] == 1 && adjacency_matrix[j][i] == 0) { adjacency_matrix[j][i] = 1; } } } System.out.println("Enter the heuristic values of the nodes"); for (int vertex = 1; vertex <= number_of_vertices; vertex++) { System.out.print(vertex + "."); heuristicvalues[vertex] = scan.nextInt(); System.out.println(); } System.out.println("Enter the source "); source = scan.nextInt(); System.out.println("The graph is explored as follows"); BestFirstSearch bestFirstSearch = new BestFirstSearch(number_of_vertices); bestFirstSearch.bestFirstSearch(adjacency_matrix, heuristicvalues,source); } catch (InputMismatchException inputMismatch) { System.out.println("Wrong Input Format"); } scan.close(); } } class Vertex implements Comparator<Vertex> { public int heuristicvalue; public int node; public Vertex(int node, int heuristicvalue) { this.heuristicvalue = heuristicvalue; this.node = node; } public Vertex() { } @Override public int compare(Vertex vertex1, Vertex vertex2) { if (vertex1.heuristicvalue < vertex2.heuristicvalue) return -1; if (vertex1.heuristicvalue > vertex2.heuristicvalue) return 1; return 0; } @Override public boolean equals(Object obj) { if (obj instanceof Vertex) { Vertex node = (Vertex) obj; if (this.node == node.node) { return true; } } return false; } }
$javac BestFirstSearch.java $java BestFirstSearch Enter the number of vertices 6 Enter the Weighted Matrix for the graph 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 1 1 0 0 0 0 Enter the heuristic values of the nodes 1.2 2.3 3.1 4.4 5.0 6.10 Enter the source 6 The graph is explored as follows 6 1 3 2 5 4
Related posts:
Java 8 Stream API Analogies in Kotlin
Java Program to Implement Iterative Deepening
Java Program to Implement Depth-limited Search
Sort a HashMap in Java
Java Program to Delete a Particular Node in a Tree Without Using Recursion
Spring Data JPA Delete and Relationships
Hướng dẫn Java Design Pattern – Command
Java Program to Check if a Given Binary Tree is an AVL Tree or Not
ThreadPoolTaskExecutor corePoolSize vs. maxPoolSize
Vector trong Java
Circular Dependencies in Spring
Spring Boot: Customize the Jackson ObjectMapper
Java CyclicBarrier vs CountDownLatch
Java Program to Print the Kind of Rotation the AVL Tree is Undergoing
Introduction to PCollections
Java Program to Implement Sieve Of Atkin
Java Program to Perform Sorting Using B-Tree
Java Program to Implement Attribute API
Java Program to Implement Solovay Strassen Primality Test Algorithm
Introduction to Spring Data REST
Inheritance with Jackson
Creating a Web Application with Spring 5
Introduction to Spring Data MongoDB
Tránh lỗi NullPointerException trong Java như thế nào?
Introduction to Using FreeMarker in Spring MVC
Performance Difference Between save() and saveAll() in Spring Data
Từ khóa static và final trong java
Java Program to Perform Right Rotation on a Binary Search Tree
Request a Delivery / Read Receipt in Javamail
Java Program to Print only Odd Numbered Levels of a Tree
Java Program to Implement Sorted Vector
HTTP Authentification and CGI/Servlet