This Java program,implements Best-First Search.Best-first search is a search algorithm which explores a graph by expanding the most promising node chosen according to a specified rule.
Judea Pearl described best-first search as estimating the promise of node n by a “heuristic evaluation function which, in general, may depend on the description of n, the description of the goal, the information gathered by the search up to that point, and most important, on any extra knowledge about the problem domain.
Here is the source code of the Java program to implements Best-First Search. The Java program is successfully compiled and run on a Linux system. The program output is also shown below.
import java.util.Comparator; import java.util.InputMismatchException; import java.util.PriorityQueue; import java.util.Scanner; public class BestFirstSearch { private PriorityQueue<Vertex> priorityQueue; private int heuristicvalues[]; private int numberOfNodes; public static final int MAX_VALUE = 999; public BestFirstSearch(int numberOfNodes) { this.numberOfNodes = numberOfNodes; this.priorityQueue = new PriorityQueue<Vertex>(this.numberOfNodes, new Vertex()); } public void bestFirstSearch(int adjacencyMatrix[][], int[] heuristicvalues,int source) { int evaluationNode; int destinationNode; int visited[] = new int [numberOfNodes + 1]; this.heuristicvalues = heuristicvalues; priorityQueue.add(new Vertex(source, this.heuristicvalues)); visited = 1; while (!priorityQueue.isEmpty()) { evaluationNode = getNodeWithMinimumHeuristicValue(); destinationNode = 1; System.out.print(evaluationNode + "\t"); while (destinationNode <= numberOfNodes) { Vertex vertex = new Vertex(destinationNode,this.heuristicvalues[destinationNode]); if ((adjacencyMatrix[evaluationNode][destinationNode] != MAX_VALUE && evaluationNode != destinationNode)&& visited[destinationNode] == 0) { priorityQueue.add(vertex); visited[destinationNode] = 1; } destinationNode++; } } } private int getNodeWithMinimumHeuristicValue() { Vertex vertex = priorityQueue.remove(); return vertex.node; } public static void main(String... arg) { int adjacency_matrix[][]; int number_of_vertices; int source = 0; int heuristicvalues[]; Scanner scan = new Scanner(System.in); try { System.out.println("Enter the number of vertices"); number_of_vertices = scan.nextInt(); adjacency_matrix = new int[number_of_vertices + 1][number_of_vertices + 1]; heuristicvalues = new int[number_of_vertices + 1]; System.out.println("Enter the Weighted Matrix for the graph"); for (int i = 1; i <= number_of_vertices; i++) { for (int j = 1; j <= number_of_vertices; j++) { adjacency_matrix[i][j] = scan.nextInt(); if (i == j) { adjacency_matrix[i][j] = 0; continue; } if (adjacency_matrix[i][j] == 0) { adjacency_matrix[i][j] = MAX_VALUE; } } } for (int i = 1; i <= number_of_vertices; i++) { for (int j = 1; j <= number_of_vertices; j++) { if (adjacency_matrix[i][j] == 1 && adjacency_matrix[j][i] == 0) { adjacency_matrix[j][i] = 1; } } } System.out.println("Enter the heuristic values of the nodes"); for (int vertex = 1; vertex <= number_of_vertices; vertex++) { System.out.print(vertex + "."); heuristicvalues[vertex] = scan.nextInt(); System.out.println(); } System.out.println("Enter the source "); source = scan.nextInt(); System.out.println("The graph is explored as follows"); BestFirstSearch bestFirstSearch = new BestFirstSearch(number_of_vertices); bestFirstSearch.bestFirstSearch(adjacency_matrix, heuristicvalues,source); } catch (InputMismatchException inputMismatch) { System.out.println("Wrong Input Format"); } scan.close(); } } class Vertex implements Comparator<Vertex> { public int heuristicvalue; public int node; public Vertex(int node, int heuristicvalue) { this.heuristicvalue = heuristicvalue; this.node = node; } public Vertex() { } @Override public int compare(Vertex vertex1, Vertex vertex2) { if (vertex1.heuristicvalue < vertex2.heuristicvalue) return -1; if (vertex1.heuristicvalue > vertex2.heuristicvalue) return 1; return 0; } @Override public boolean equals(Object obj) { if (obj instanceof Vertex) { Vertex node = (Vertex) obj; if (this.node == node.node) { return true; } } return false; } }
$javac BestFirstSearch.java $java BestFirstSearch Enter the number of vertices 6 Enter the Weighted Matrix for the graph 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 1 1 0 0 0 0 Enter the heuristic values of the nodes 1.2 2.3 3.1 4.4 5.0 6.10 Enter the source 6 The graph is explored as follows 6 1 3 2 5 4
Related posts:
Updating your Password
Java Program to Check if a Directed Graph is a Tree or Not Using DFS
Spring Boot - Exception Handling
Java String to InputStream
Java Program to Find Maximum Element in an Array using Binary Search
Case-Insensitive String Matching in Java
Control the Session with Spring Security
Java Program to Check if a Given Graph Contain Hamiltonian Cycle or Not
Spring Cloud Bus
Java Program to Implement Iterative Deepening
Mệnh đề if-else trong java
Java Program to Implement Insertion Sort
String Joiner trong Java 8
Lập trình mạng với java
Spring Boot Change Context Path
Generating Random Numbers in a Range in Java
Spring Boot - Twilio
New Features in Java 12
Count Occurrences of a Char in a String
Java Program to Implement ArrayDeque API
How to Delay Code Execution in Java
RegEx for matching Date Pattern in Java
Set Interface trong Java
Java Program to Implement ConcurrentSkipListMap API
Java – Write to File
Java Program to Implement the Hungarian Algorithm for Bipartite Matching
Sử dụng Fork/Join Framework với ForkJoinPool trong Java
Spring AMQP in Reactive Applications
Allow user:password in URL
Check if there is mail waiting
Spring Webflux and CORS
Guide to the Volatile Keyword in Java