Java Program to Implement Find all Cross Edges in a Graph

This Java program,performs the DFS traversal on the given graph represented by a adjacency matrix to find all the cross edges in a graph.the DFS traversal makes use of an stack.

Here is the source code of the Java program to find the cross Edges.The Java program is successfully compiled and run on a Linux system. The program output is also shown below.

import java.util.HashMap;
import java.util.InputMismatchException;
import java.util.Scanner;
import java.util.Set;
import java.util.Stack;
 
public class CrossEdge
{
    private Stack<Integer> stack;
    private HashMap<Integer, Integer> crossEdges;
    private int adjacencyMatrix[][];
 
    public CrossEdge() 
    {
        stack = new Stack<Integer>();
        crossEdges = new HashMap<Integer, Integer>();
    }
 
    public void dfs(int adjacency_matrix[][], int source)
    {
        int number_of_nodes = adjacency_matrix.length - 1;
        adjacencyMatrix = new int[number_of_nodes + 1][number_of_nodes + 1];
        for (int sourcevertex = 1; sourcevertex <= number_of_nodes; sourcevertex++)
        {
            for (int destinationvertex = 1; destinationvertex <= number_of_nodes; destinationvertex++)
            {
                adjacencyMatrix[sourcevertex][destinationvertex] = 
                     adjacency_matrix[sourcevertex][destinationvertex];
            }
        }
 
        int visited[] = new int[number_of_nodes + 1];		
        int element = source;		
        int destination = source;			
        visited = 1;		
        stack.push(source);
 
        while (!stack.isEmpty())
        {
            element = stack.peek();
            destination = element;	
	    while (destination <= number_of_nodes)
	    {
                if (adjacencyMatrix[element][destination] == 1 && visited[destination] == 1)
                {
                    if (!stack.contains(destination))
                    {
                        if ( element > destination )	
                            crossEdges.put(element, destination);	
                    }
                }
 
     	        if (adjacencyMatrix[element][destination] == 1 && visited[destination] == 0)
	        {
                    stack.push(destination);
                    visited[destination] = 1;
                    adjacencyMatrix[element][destination] = 0;
                    element = destination;
                    destination = 1;
	            continue;
                }
                destination++;
	    }
            stack.pop();	
        }	
    }
 
    public void printCrossEdges()
    {
        System.out.println("\nSOURCE  : DESTINATION");
        Set<Integer> source = crossEdges.keySet();
        for (Integer sourcevertex : source)
        {
            System.out.println(sourcevertex + "\t:\t"+ crossEdges.get(sourcevertex));
        }
    }
 
    public static void main(String...arg)
    {
        int number_of_nodes, source;
        Scanner scanner = null;
 	try
        {
	    System.out.println("Enter the number of nodes in the graph");
            scanner = new Scanner(System.in);
            number_of_nodes = scanner.nextInt();
 
	    int adjacency_matrix[][] = new int[number_of_nodes + 1][number_of_nodes + 1];
	    System.out.println("Enter the adjacency matrix");
	    for (int i = 1; i <= number_of_nodes; i++)
	       for (int j = 1; j <= number_of_nodes; j++)
                   adjacency_matrix[i][j] = scanner.nextInt();
 
 
	    System.out.println("Enter the source for the graph");
            source = scanner.nextInt(); 
 
            CrossEdge crossEdge = new CrossEdge();
            crossEdge.dfs(adjacency_matrix, source);
            crossEdge.printCrossEdges();
 
        }catch(InputMismatchException inputMismatch)
        {
            System.out.println("Wrong Input format");
        }	
        scanner.close();	
    }	
}
$javac CrossEdge.java
$java CrossEdge
Enter the number of nodes in the graph
5
Enter the adjacency matrix
0 1 0 1 0
0 0 1 0 0
0 0 0 0 0
0 1 0 0 1
0 0 1 0 0
Enter the source for the graph
1
The Cross Edges are
SOURCE  : DESTINATION
4	:	2
5	:	3

Related posts:

A Guide to TreeSet in Java
Java InputStream to Byte Array and ByteBuffer
Java Program to Perform Optimal Paranthesization Using Dynamic Programming
Java Program to Represent Graph Using Incidence List
Java Program to Implement Patricia Trie
Java 8 Streams peek() API
Control Structures in Java
Using a Spring Cloud App Starter
Java Program to Implement Horner Algorithm
Java Program to Solve any Linear Equation in One Variable
Serialize Only Fields that meet a Custom Criteria with Jackson
Java Program to Perform Partition of an Integer in All Possible Ways
Giới thiệu luồng vào ra (I/O) trong Java
Command-Line Arguments in Java
Converting a Stack Trace to a String in Java
Java Program to Apply Above-Below-on Test to Find the Position of a Point with respect to a Line
Java Program to Solve Set Cover Problem assuming at max 2 Elements in a Subset
Java Program to Implement Counting Sort
Working with Network Interfaces in Java
Java Program to Find the Peak Element of an Array O(n) time (Naive Method)
Hướng dẫn Java Design Pattern – Facade
Java Program to Perform Polygon Containment Test
Java Program to Implement Stack API
Validations for Enum Types
Java Program to Find the Longest Subsequence Common to All Sequences in a Set of Sequences
Java Program to Implement Bloom Filter
Java Program to Implement Self Balancing Binary Search Tree
Loại bỏ các phần tử trùng trong một ArrayList như thế nào?
Limiting Query Results with JPA and Spring Data JPA
Spring Boot: Customize the Jackson ObjectMapper
Java Program to Implement Coppersmith Freivald’s Algorithm
Spring’s RequestBody and ResponseBody Annotations