This is a Java Program to implement 2D KD Tree and perform partial search(Searching a node with either of the coordinate). In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of binary space partitioning trees.
Here is the source code of the Java Program to Perform Partial Key Search in a K-D Tree. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a java program to perform partial search in 2D KD Tree
import java.io.IOException;
import java.util.Scanner;
class KD2DNode
{
int axis;
double[] x;
int id;
boolean checked;
boolean orientation;
KD2DNode Parent;
KD2DNode Left;
KD2DNode Right;
public KD2DNode(double[] x0, int axis0)
{
x = new double[2];
axis = axis0;
for (int k = 0; k < 2; k++)
x[k] = x0[k];
Left = Right = Parent = null;
checked = false;
id = 0;
}
public KD2DNode FindParent(double[] x0)
{
KD2DNode parent = null;
KD2DNode next = this;
int split;
while (next != null)
{
split = next.axis;
parent = next;
if (x0[split] > next.x[split])
next = next.Right;
else
next = next.Left;
}
return parent;
}
public KD2DNode Insert(double[] p)
{
x = new double[2];
KD2DNode parent = FindParent(p);
if (equal(p, parent.x, 2) == true)
return null;
KD2DNode newNode = new KD2DNode(p,
parent.axis + 1 < 2 ? parent.axis + 1 : 0);
newNode.Parent = parent;
if (p[parent.axis] > parent.x[parent.axis])
{
parent.Right = newNode;
newNode.orientation = true; //
} else
{
parent.Left = newNode;
newNode.orientation = false; //
}
return newNode;
}
boolean equal(double[] x1, double[] x2, int dim)
{
for (int k = 0; k < dim; k++)
{
if (x1[k] != x2[k])
return false;
}
return true;
}
double distance2(double[] x1, double[] x2, int dim)
{
double S = 0;
for (int k = 0; k < dim; k++)
S += (x1[k] - x2[k]) * (x1[k] - x2[k]);
return S;
}
}
class KD2DTree
{
KD2DNode Root;
int TimeStart, TimeFinish;
int CounterFreq;
double d_min;
KD2DNode nearest_neighbour;
int KD_id;
int nList;
KD2DNode CheckedNodes[];
int checked_nodes;
KD2DNode List[];
double x_min[], x_max[];
boolean max_boundary[], min_boundary[];
int n_boundary;
public KD2DTree(int i)
{
Root = null;
KD_id = 1;
nList = 0;
List = new KD2DNode[i];
CheckedNodes = new KD2DNode[i];
max_boundary = new boolean[2];
min_boundary = new boolean[2];
x_min = new double[2];
x_max = new double[2];
}
public boolean add(double[] x)
{
if (nList >= 2000000 - 1)
return false; // can't add more points
if (Root == null)
{
Root = new KD2DNode(x, 0);
Root.id = KD_id++;
List[nList++] = Root;
} else
{
KD2DNode pNode;
if ((pNode = Root.Insert(x)) != null)
{
pNode.id = KD_id++;
List[nList++] = pNode;
}
}
return true;
}
public KD2DNode find_nearest(double[] x)
{
if (Root == null)
return null;
checked_nodes = 0;
KD2DNode parent = Root.FindParent(x);
nearest_neighbour = parent;
d_min = Root.distance2(x, parent.x, 2);
;
if (parent.equal(x, parent.x, 2) == true)
return nearest_neighbour;
search_parent(parent, x);
uncheck();
return nearest_neighbour;
}
public void check_subtree(KD2DNode node, double[] x)
{
if ((node == null) || node.checked)
return;
CheckedNodes[checked_nodes++] = node;
node.checked = true;
set_bounding_cube(node, x);
int dim = node.axis;
double d = node.x[dim] - x[dim];
if (d * d > d_min)
{
if (node.x[dim] > x[dim])
check_subtree(node.Left, x);
else
check_subtree(node.Right, x);
} else
{
check_subtree(node.Left, x);
check_subtree(node.Right, x);
}
}
public void set_bounding_cube(KD2DNode node, double[] x)
{
if (node == null)
return;
int d = 0;
double dx;
for (int k = 0; k < 2; k++)
{
dx = node.x[k] - x[k];
if (dx > 0)
{
dx *= dx;
if (!max_boundary[k])
{
if (dx > x_max[k])
x_max[k] = dx;
if (x_max[k] > d_min)
{
max_boundary[k] = true;
n_boundary++;
}
}
} else
{
dx *= dx;
if (!min_boundary[k])
{
if (dx > x_min[k])
x_min[k] = dx;
if (x_min[k] > d_min)
{
min_boundary[k] = true;
n_boundary++;
}
}
}
d += dx;
if (d > d_min)
return;
}
if (d < d_min)
{
d_min = d;
nearest_neighbour = node;
}
}
public KD2DNode search_parent(KD2DNode parent, double[] x)
{
for (int k = 0; k < 2; k++)
{
x_min[k] = x_max[k] = 0;
max_boundary[k] = min_boundary[k] = false; //
}
n_boundary = 0;
KD2DNode search_root = parent;
while (parent != null && (n_boundary != 2 * 2))
{
check_subtree(parent, x);
search_root = parent;
parent = parent.Parent;
}
return search_root;
}
public void uncheck()
{
for (int n = 0; n < checked_nodes; n++)
CheckedNodes[n].checked = false;
}
public void inorder()
{
inorder(Root);
}
private void inorder(KD2DNode root)
{
if (root != null)
{
inorder(root.Left);
System.out.print("(" + root.x[0] + ", " + root.x[1] + ") ");
inorder(root.Right);
}
}
public void preorder()
{
preorder(Root);
}
private void preorder(KD2DNode root)
{
if (root != null)
{
System.out.print("(" + root.x[0] + ", " + root.x[1] + ") ");
inorder(root.Left);
inorder(root.Right);
}
}
public void postorder()
{
postorder(Root);
}
private void postorder(KD2DNode root)
{
if (root != null)
{
inorder(root.Left);
inorder(root.Right);
System.out.print("(" + root.x[0] + ", " + root.x[1] + ") ");
}
}
public void search(double p)
{
search(Root, p);
}
private void search(KD2DNode root, double p)
{
if (root != null)
{
search(root.Left, p);
if (p == root.x[0] || p == root.x[1])
System.out.print("True (" + root.x[0] + ", " + root.x[1]
+ ") ");
search(root.Right, p);
}
}
}
public class KD2D_Partial_Search
{
public static void main(String args[]) throws IOException
{
int numpoints = 5;
Scanner sc = new Scanner(System.in);
KD2DTree kdt = new KD2DTree(numpoints);
double x[] = new double[2];
x[0] = 0.0;
x[1] = 0.0;
kdt.add(x);
x[0] = 3.3;
x[1] = 1.5;
kdt.add(x);
x[0] = 4.7;
x[1] = 11.1;
kdt.add(x);
x[0] = 5.0;
x[1] = 12.3;
kdt.add(x);
x[0] = 5.1;
x[1] = 1.2;
kdt.add(x);
System.out.println("Enter the any one of the co-ordinates of the point: <x>/<y>");
double q = sc.nextDouble();
kdt.search(q);
System.out.println("\nInorder of 2D Kd tree: ");
kdt.inorder();
System.out.println("\nPreorder of 2D Kd tree: ");
kdt.preorder();
System.out.println("\npostorder of 2D Kd tree: ");
kdt.postorder();
sc.close();
}
}
Output:
$ javac KD2D_Partial_Search.java $ java KD2D_Partial_Search Partial Key Search Enter the any one of the co-ordinates of the point: <x>/<y> 5 True (5.0, 12.3) Inorder of 2D Kd tree: (0.0, 0.0) (5.1, 1.2) (3.3, 1.5) (4.7, 11.1) (5.0, 12.3) Preorder of 2D Kd tree: (0.0, 0.0) (5.1, 1.2) (3.3, 1.5) (4.7, 11.1) (5.0, 12.3) postorder of 2D Kd tree: (5.1, 1.2) (3.3, 1.5) (4.7, 11.1) (5.0, 12.3) (0.0, 0.0)
Related posts:
CharSequence vs. String in Java
Java Program to Perform the Unique Factorization of a Given Number
Java Program to Solve Knapsack Problem Using Dynamic Programming
Java Program to Find Whether a Path Exists Between 2 Given Nodes
Mảng (Array) trong Java
How to Replace Many if Statements in Java
Sử dụng CountDownLatch trong Java
ClassNotFoundException vs NoClassDefFoundError
Spring Boot - CORS Support
Java Program to Find the Minimum value of Binary Search Tree
Java – String to Reader
Java Program to Perform Uniform Binary Search
Java Program to Check the Connectivity of Graph Using DFS
Hướng dẫn sử dụng luồng vào ra ký tự trong Java
Java Program to Generate Random Numbers Using Middle Square Method
Running Spring Boot Applications With Minikube
Thao tác với tập tin và thư mục trong Java
Java Program to Perform Searching in a 2-Dimension K-D Tree
Java Program to Implement LinkedBlockingDeque API
Spring Cloud Series – The Gateway Pattern
Java Program to Implement Word Wrap Problem
Java Program to Implement Bit Array
Java – Create a File
Apache Commons Collections SetUtils
Spring 5 and Servlet 4 – The PushBuilder
Introduction to the Functional Web Framework in Spring 5
Java Program to Find All Pairs Shortest Path
Java Program to Find the Peak Element of an Array O(n) time (Naive Method)
Sorting in Java
Jackson Exceptions – Problems and Solutions
Java Program to Implement PriorityQueue API
Java Program to Implement Coppersmith Freivald’s Algorithm