This is a Java Program to implement 2D KD Tree and perform partial search(Searching a node with either of the coordinate). In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of binary space partitioning trees.
Here is the source code of the Java Program to Perform Partial Key Search in a K-D Tree. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a java program to perform partial search in 2D KD Tree
import java.io.IOException;
import java.util.Scanner;
class KD2DNode
{
int axis;
double[] x;
int id;
boolean checked;
boolean orientation;
KD2DNode Parent;
KD2DNode Left;
KD2DNode Right;
public KD2DNode(double[] x0, int axis0)
{
x = new double[2];
axis = axis0;
for (int k = 0; k < 2; k++)
x[k] = x0[k];
Left = Right = Parent = null;
checked = false;
id = 0;
}
public KD2DNode FindParent(double[] x0)
{
KD2DNode parent = null;
KD2DNode next = this;
int split;
while (next != null)
{
split = next.axis;
parent = next;
if (x0[split] > next.x[split])
next = next.Right;
else
next = next.Left;
}
return parent;
}
public KD2DNode Insert(double[] p)
{
x = new double[2];
KD2DNode parent = FindParent(p);
if (equal(p, parent.x, 2) == true)
return null;
KD2DNode newNode = new KD2DNode(p,
parent.axis + 1 < 2 ? parent.axis + 1 : 0);
newNode.Parent = parent;
if (p[parent.axis] > parent.x[parent.axis])
{
parent.Right = newNode;
newNode.orientation = true; //
} else
{
parent.Left = newNode;
newNode.orientation = false; //
}
return newNode;
}
boolean equal(double[] x1, double[] x2, int dim)
{
for (int k = 0; k < dim; k++)
{
if (x1[k] != x2[k])
return false;
}
return true;
}
double distance2(double[] x1, double[] x2, int dim)
{
double S = 0;
for (int k = 0; k < dim; k++)
S += (x1[k] - x2[k]) * (x1[k] - x2[k]);
return S;
}
}
class KD2DTree
{
KD2DNode Root;
int TimeStart, TimeFinish;
int CounterFreq;
double d_min;
KD2DNode nearest_neighbour;
int KD_id;
int nList;
KD2DNode CheckedNodes[];
int checked_nodes;
KD2DNode List[];
double x_min[], x_max[];
boolean max_boundary[], min_boundary[];
int n_boundary;
public KD2DTree(int i)
{
Root = null;
KD_id = 1;
nList = 0;
List = new KD2DNode[i];
CheckedNodes = new KD2DNode[i];
max_boundary = new boolean[2];
min_boundary = new boolean[2];
x_min = new double[2];
x_max = new double[2];
}
public boolean add(double[] x)
{
if (nList >= 2000000 - 1)
return false; // can't add more points
if (Root == null)
{
Root = new KD2DNode(x, 0);
Root.id = KD_id++;
List[nList++] = Root;
} else
{
KD2DNode pNode;
if ((pNode = Root.Insert(x)) != null)
{
pNode.id = KD_id++;
List[nList++] = pNode;
}
}
return true;
}
public KD2DNode find_nearest(double[] x)
{
if (Root == null)
return null;
checked_nodes = 0;
KD2DNode parent = Root.FindParent(x);
nearest_neighbour = parent;
d_min = Root.distance2(x, parent.x, 2);
;
if (parent.equal(x, parent.x, 2) == true)
return nearest_neighbour;
search_parent(parent, x);
uncheck();
return nearest_neighbour;
}
public void check_subtree(KD2DNode node, double[] x)
{
if ((node == null) || node.checked)
return;
CheckedNodes[checked_nodes++] = node;
node.checked = true;
set_bounding_cube(node, x);
int dim = node.axis;
double d = node.x[dim] - x[dim];
if (d * d > d_min)
{
if (node.x[dim] > x[dim])
check_subtree(node.Left, x);
else
check_subtree(node.Right, x);
} else
{
check_subtree(node.Left, x);
check_subtree(node.Right, x);
}
}
public void set_bounding_cube(KD2DNode node, double[] x)
{
if (node == null)
return;
int d = 0;
double dx;
for (int k = 0; k < 2; k++)
{
dx = node.x[k] - x[k];
if (dx > 0)
{
dx *= dx;
if (!max_boundary[k])
{
if (dx > x_max[k])
x_max[k] = dx;
if (x_max[k] > d_min)
{
max_boundary[k] = true;
n_boundary++;
}
}
} else
{
dx *= dx;
if (!min_boundary[k])
{
if (dx > x_min[k])
x_min[k] = dx;
if (x_min[k] > d_min)
{
min_boundary[k] = true;
n_boundary++;
}
}
}
d += dx;
if (d > d_min)
return;
}
if (d < d_min)
{
d_min = d;
nearest_neighbour = node;
}
}
public KD2DNode search_parent(KD2DNode parent, double[] x)
{
for (int k = 0; k < 2; k++)
{
x_min[k] = x_max[k] = 0;
max_boundary[k] = min_boundary[k] = false; //
}
n_boundary = 0;
KD2DNode search_root = parent;
while (parent != null && (n_boundary != 2 * 2))
{
check_subtree(parent, x);
search_root = parent;
parent = parent.Parent;
}
return search_root;
}
public void uncheck()
{
for (int n = 0; n < checked_nodes; n++)
CheckedNodes[n].checked = false;
}
public void inorder()
{
inorder(Root);
}
private void inorder(KD2DNode root)
{
if (root != null)
{
inorder(root.Left);
System.out.print("(" + root.x[0] + ", " + root.x[1] + ") ");
inorder(root.Right);
}
}
public void preorder()
{
preorder(Root);
}
private void preorder(KD2DNode root)
{
if (root != null)
{
System.out.print("(" + root.x[0] + ", " + root.x[1] + ") ");
inorder(root.Left);
inorder(root.Right);
}
}
public void postorder()
{
postorder(Root);
}
private void postorder(KD2DNode root)
{
if (root != null)
{
inorder(root.Left);
inorder(root.Right);
System.out.print("(" + root.x[0] + ", " + root.x[1] + ") ");
}
}
public void search(double p)
{
search(Root, p);
}
private void search(KD2DNode root, double p)
{
if (root != null)
{
search(root.Left, p);
if (p == root.x[0] || p == root.x[1])
System.out.print("True (" + root.x[0] + ", " + root.x[1]
+ ") ");
search(root.Right, p);
}
}
}
public class KD2D_Partial_Search
{
public static void main(String args[]) throws IOException
{
int numpoints = 5;
Scanner sc = new Scanner(System.in);
KD2DTree kdt = new KD2DTree(numpoints);
double x[] = new double[2];
x[0] = 0.0;
x[1] = 0.0;
kdt.add(x);
x[0] = 3.3;
x[1] = 1.5;
kdt.add(x);
x[0] = 4.7;
x[1] = 11.1;
kdt.add(x);
x[0] = 5.0;
x[1] = 12.3;
kdt.add(x);
x[0] = 5.1;
x[1] = 1.2;
kdt.add(x);
System.out.println("Enter the any one of the co-ordinates of the point: <x>/<y>");
double q = sc.nextDouble();
kdt.search(q);
System.out.println("\nInorder of 2D Kd tree: ");
kdt.inorder();
System.out.println("\nPreorder of 2D Kd tree: ");
kdt.preorder();
System.out.println("\npostorder of 2D Kd tree: ");
kdt.postorder();
sc.close();
}
}
Output:
$ javac KD2D_Partial_Search.java $ java KD2D_Partial_Search Partial Key Search Enter the any one of the co-ordinates of the point: <x>/<y> 5 True (5.0, 12.3) Inorder of 2D Kd tree: (0.0, 0.0) (5.1, 1.2) (3.3, 1.5) (4.7, 11.1) (5.0, 12.3) Preorder of 2D Kd tree: (0.0, 0.0) (5.1, 1.2) (3.3, 1.5) (4.7, 11.1) (5.0, 12.3) postorder of 2D Kd tree: (5.1, 1.2) (3.3, 1.5) (4.7, 11.1) (5.0, 12.3) (0.0, 0.0)
Related posts:
Java 9 Stream API Improvements
Java Program to Implement Hash Tables with Double Hashing
Testing in Spring Boot
Java Program to Implement Sparse Array
Giới thiệu Google Guice – Dependency injection (DI) framework
Deploy a Spring Boot WAR into a Tomcat Server
Apache Commons Collections SetUtils
Java Program to Implement RoleList API
Java Program to Check Whether Topological Sorting can be Performed in a Graph
Finding the Differences Between Two Lists in Java
Using Java Assertions
Java Program to Check for balanced parenthesis by using Stacks
A Quick Guide to Using Keycloak with Spring Boot
Stack Memory and Heap Space in Java
Java Program to Check whether Undirected Graph is Connected using DFS
Create a Custom Exception in Java
Spring Boot with Multiple SQL Import Files
Java Program to Implement Max-Flow Min-Cut Theorem
Java Program to Implement Quick Hull Algorithm to Find Convex Hull
Java Program to do a Depth First Search/Traversal on a graph non-recursively
Java Program to Compute Cross Product of Two Vectors
Hướng dẫn Java Design Pattern – Transfer Object
Extra Login Fields with Spring Security
Java Program to Sort an Array of 10 Elements Using Heap Sort Algorithm
Using Spring ResponseEntity to Manipulate the HTTP Response
Java Program to Implement the MD5 Algorithm
Java Program to Implement Nth Root Algorithm
Java Program to Implement Sieve Of Sundaram
Java Program to Implement Tarjan Algorithm
Java Program to Implement the Schonhage-Strassen Algorithm for Multiplication of Two Numbers
Java Program to Implement Warshall Algorithm
DistinctBy in the Java Stream API