This is a Java Program to implement Binomial Heap. A binomial heap is a heap similar to a binary heap but also supports quick merging of two heaps. This is achieved by using a special tree structure. It is important as an implementation of the mergeable heap abstract data type (also called meldable heap), which is a priority queue supporting merge operation. This program is based on the implementation by Willem Visser .
Here is the source code of the Java program to implement Binomial Heap. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
/* * Java Program to Implement Binomial Heap */ import java.util.Scanner; /* Class BinomialHeapNode */ class BinomialHeapNode { int key, degree; BinomialHeapNode parent; BinomialHeapNode sibling; BinomialHeapNode child; /* Constructor */ public BinomialHeapNode(int k) { key = k; degree = 0; parent = null; sibling = null; child = null; } /* Function reverse */ public BinomialHeapNode reverse(BinomialHeapNode sibl) { BinomialHeapNode ret; if (sibling != null) ret = sibling.reverse(this); else ret = this; sibling = sibl; return ret; } /* Function to find min node */ public BinomialHeapNode findMinNode() { BinomialHeapNode x = this, y = this; int min = x.key; while (x != null) { if (x.key < min) { y = x; min = x.key; } x = x.sibling; } return y; } /* Function to find node with key value */ public BinomialHeapNode findANodeWithKey(int value) { BinomialHeapNode temp = this, node = null; while (temp != null) { if (temp.key == value) { node = temp; break; } if (temp.child == null) temp = temp.sibling; else { node = temp.child.findANodeWithKey(value); if (node == null) temp = temp.sibling; else break; } } return node; } /* Function to get size */ public int getSize() { return (1 + ((child == null) ? 0 : child.getSize()) + ((sibling == null) ? 0 : sibling.getSize())); } } /* class BinomialHeap */ class BinomialHeap { private BinomialHeapNode Nodes; private int size; /* Constructor */ public BinomialHeap() { Nodes = null; size = 0; } /* Check if heap is empty */ public boolean isEmpty() { return Nodes == null; } /* Function to get size */ public int getSize() { return size; } /* clear heap */ public void makeEmpty() { Nodes = null; size = 0; } /* Function to insert */ public void insert(int value) { if (value > 0) { BinomialHeapNode temp = new BinomialHeapNode(value); if (Nodes == null) { Nodes = temp; size = 1; } else { unionNodes(temp); size++; } } } /* Function to unite two binomial heaps */ private void merge(BinomialHeapNode binHeap) { BinomialHeapNode temp1 = Nodes, temp2 = binHeap; while ((temp1 != null) && (temp2 != null)) { if (temp1.degree == temp2.degree) { BinomialHeapNode tmp = temp2; temp2 = temp2.sibling; tmp.sibling = temp1.sibling; temp1.sibling = tmp; temp1 = tmp.sibling; } else { if (temp1.degree < temp2.degree) { if ((temp1.sibling == null) || (temp1.sibling.degree > temp2.degree)) { BinomialHeapNode tmp = temp2; temp2 = temp2.sibling; tmp.sibling = temp1.sibling; temp1.sibling = tmp; temp1 = tmp.sibling; } else { temp1 = temp1.sibling; } } else { BinomialHeapNode tmp = temp1; temp1 = temp2; temp2 = temp2.sibling; temp1.sibling = tmp; if (tmp == Nodes) { Nodes = temp1; } else { } } } } if (temp1 == null) { temp1 = Nodes; while (temp1.sibling != null) { temp1 = temp1.sibling; } temp1.sibling = temp2; } else { } } /* Function for union of nodes */ private void unionNodes(BinomialHeapNode binHeap) { merge(binHeap); BinomialHeapNode prevTemp = null, temp = Nodes, nextTemp = Nodes.sibling; while (nextTemp != null) { if ((temp.degree != nextTemp.degree) || ((nextTemp.sibling != null) && (nextTemp.sibling.degree == temp.degree))) { prevTemp = temp; temp = nextTemp; } else { if (temp.key <= nextTemp.key) { temp.sibling = nextTemp.sibling; nextTemp.parent = temp; nextTemp.sibling = temp.child; temp.child = nextTemp; temp.degree++; } else { if (prevTemp == null) { Nodes = nextTemp; } else { prevTemp.sibling = nextTemp; } temp.parent = nextTemp; temp.sibling = nextTemp.child; nextTemp.child = temp; nextTemp.degree++; temp = nextTemp; } } nextTemp = temp.sibling; } } /* Function to return minimum key */ public int findMinimum() { return Nodes.findMinNode().key; } /* Function to delete a particular element */ public void delete(int value) { if ((Nodes != null) && (Nodes.findANodeWithKey(value) != null)) { decreaseKeyValue(value, findMinimum() - 1); extractMin(); } } /* Function to decrease key with a given value */ public void decreaseKeyValue(int old_value, int new_value) { BinomialHeapNode temp = Nodes.findANodeWithKey(old_value); if (temp == null) return; temp.key = new_value; BinomialHeapNode tempParent = temp.parent; while ((tempParent != null) && (temp.key < tempParent.key)) { int z = temp.key; temp.key = tempParent.key; tempParent.key = z; temp = tempParent; tempParent = tempParent.parent; } } /* Function to extract the node with the minimum key */ public int extractMin() { if (Nodes == null) return -1; BinomialHeapNode temp = Nodes, prevTemp = null; BinomialHeapNode minNode = Nodes.findMinNode(); while (temp.key != minNode.key) { prevTemp = temp; temp = temp.sibling; } if (prevTemp == null) { Nodes = temp.sibling; } else { prevTemp.sibling = temp.sibling; } temp = temp.child; BinomialHeapNode fakeNode = temp; while (temp != null) { temp.parent = null; temp = temp.sibling; } if ((Nodes == null) && (fakeNode == null)) { size = 0; } else { if ((Nodes == null) && (fakeNode != null)) { Nodes = fakeNode.reverse(null); size = Nodes.getSize(); } else { if ((Nodes != null) && (fakeNode == null)) { size = Nodes.getSize(); } else { unionNodes(fakeNode.reverse(null)); size = Nodes.getSize(); } } } return minNode.key; } /* Function to display heap */ public void displayHeap() { System.out.print("\nHeap : "); displayHeap(Nodes); System.out.println("\n"); } private void displayHeap(BinomialHeapNode r) { if (r != null) { displayHeap(r.child); System.out.print(r.key +" "); displayHeap(r.sibling); } } } /* Class BinomialHeapTest */ public class BinomialHeapTest { public static void main(String[] args) { Scanner scan = new Scanner(System.in); System.out.println("Binomial Heap Test\n\n"); /* Make object of BinomialHeap */ BinomialHeap bh = new BinomialHeap( ); char ch; /* Perform BinomialHeap operations */ do { System.out.println("\nBinomialHeap Operations\n"); System.out.println("1. insert "); System.out.println("2. delete "); System.out.println("3. size"); System.out.println("4. check empty"); System.out.println("5. clear"); int choice = scan.nextInt(); switch (choice) { case 1 : System.out.println("Enter integer element to insert"); bh.insert( scan.nextInt() ); break; case 2 : System.out.println("Enter element to delete "); bh.delete( scan.nextInt() ); break; case 3 : System.out.println("Size = "+ bh.getSize()); break; case 4 : System.out.println("Empty status = "+ bh.isEmpty()); break; case 5 : bh.makeEmpty(); System.out.println("Heap Cleared\n"); break; default : System.out.println("Wrong Entry \n "); break; } /* Display heap */ bh.displayHeap(); System.out.println("\nDo you want to continue (Type y or n) \n"); ch = scan.next().charAt(0); } while (ch == 'Y'|| ch == 'y'); } }
Binomial Heap Test BinomialHeap Operations 1. insert 2. delete 3. size 4. check empty 5. clear 1 Enter integer element to insert 73 Heap : 73 Do you want to continue (Type y or n) y BinomialHeap Operations 1. insert 2. delete 3. size 4. check empty 5. clear 1 Enter integer element to insert 19 Heap : 73 19 Do you want to continue (Type y or n) y BinomialHeap Operations 1. insert 2. delete 3. size 4. check empty 5. clear 1 Enter integer element to insert 24 Heap : 24 73 19 Do you want to continue (Type y or n) y BinomialHeap Operations 1. insert 2. delete 3. size 4. check empty 5. clear 1 Enter integer element to insert 51 Heap : 51 24 73 19 Do you want to continue (Type y or n) y BinomialHeap Operations 1. insert 2. delete 3. size 4. check empty 5. clear 1 Enter integer element to insert 99 Heap : 99 51 24 73 19 Do you want to continue (Type y or n) y BinomialHeap Operations 1. insert 2. delete 3. size 4. check empty 5. clear 3 Size = 5 Heap : 99 51 24 73 19 Do you want to continue (Type y or n) y BinomialHeap Operations 1. insert 2. delete 3. size 4. check empty 5. clear 2 Enter element to delete 51 Heap : 99 73 24 19 Do you want to continue (Type y or n) y BinomialHeap Operations 1. insert 2. delete 3. size 4. check empty 5. clear 5 Heap Cleared Heap : Do you want to continue (Type y or n) y BinomialHeap Operations 1. insert 2. delete 3. size 4. check empty 5. clear 4 Empty status = true Heap : Do you want to continue (Type y or n) n
Related posts:
Convert Character Array to String in Java
Java 14 Record Keyword
Notify User of Login From New Device or Location
Spring Boot - Tracing Micro Service Logs
Java Program to Check for balanced parenthesis by using Stacks
Java Program to Implement Levenshtein Distance Computing Algorithm
Guide to DelayQueue
Vấn đề Nhà sản xuất (Producer) – Người tiêu dùng (Consumer) và đồng bộ hóa các luồng trong Java
Converting a Stack Trace to a String in Java
Runnable vs. Callable in Java
An Intro to Spring Cloud Zookeeper
Java Program to Implement the MD5 Algorithm
Java Program to Implement Sorted List
Introduction to Spring Cloud OpenFeign
Lớp LinkedHashMap trong Java
Java Program to Implement Karatsuba Multiplication Algorithm
Java Program to Implement Solovay Strassen Primality Test Algorithm
Encode/Decode to/from Base64
Java – String to Reader
Spring MVC Setup with Kotlin
Java Program to Perform Postorder Non-Recursive Traversal of a Given Binary Tree
Guide to Character Encoding
Creating a Custom Starter with Spring Boot
Adding Parameters to HttpClient Requests
Java Map With Case-Insensitive Keys
Java Program to Implement Double Ended Queue
Java Program to Implement Best-First Search
Check If a String Is Numeric in Java
Guide to Mustache with Spring Boot
Java Program to Use rand and srand Functions
Spring @RequestParam Annotation
Concrete Class in Java