This is a Java Program to implement Binomial Heap. A binomial heap is a heap similar to a binary heap but also supports quick merging of two heaps. This is achieved by using a special tree structure. It is important as an implementation of the mergeable heap abstract data type (also called meldable heap), which is a priority queue supporting merge operation. This program is based on the implementation by Willem Visser .
Here is the source code of the Java program to implement Binomial Heap. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
/*
* Java Program to Implement Binomial Heap
*/
import java.util.Scanner;
/* Class BinomialHeapNode */
class BinomialHeapNode
{
int key, degree;
BinomialHeapNode parent;
BinomialHeapNode sibling;
BinomialHeapNode child;
/* Constructor */
public BinomialHeapNode(int k)
{
key = k;
degree = 0;
parent = null;
sibling = null;
child = null;
}
/* Function reverse */
public BinomialHeapNode reverse(BinomialHeapNode sibl)
{
BinomialHeapNode ret;
if (sibling != null)
ret = sibling.reverse(this);
else
ret = this;
sibling = sibl;
return ret;
}
/* Function to find min node */
public BinomialHeapNode findMinNode()
{
BinomialHeapNode x = this, y = this;
int min = x.key;
while (x != null) {
if (x.key < min) {
y = x;
min = x.key;
}
x = x.sibling;
}
return y;
}
/* Function to find node with key value */
public BinomialHeapNode findANodeWithKey(int value)
{
BinomialHeapNode temp = this, node = null;
while (temp != null)
{
if (temp.key == value)
{
node = temp;
break;
}
if (temp.child == null)
temp = temp.sibling;
else
{
node = temp.child.findANodeWithKey(value);
if (node == null)
temp = temp.sibling;
else
break;
}
}
return node;
}
/* Function to get size */
public int getSize()
{
return (1 + ((child == null) ? 0 : child.getSize()) + ((sibling == null) ? 0 : sibling.getSize()));
}
}
/* class BinomialHeap */
class BinomialHeap
{
private BinomialHeapNode Nodes;
private int size;
/* Constructor */
public BinomialHeap()
{
Nodes = null;
size = 0;
}
/* Check if heap is empty */
public boolean isEmpty()
{
return Nodes == null;
}
/* Function to get size */
public int getSize()
{
return size;
}
/* clear heap */
public void makeEmpty()
{
Nodes = null;
size = 0;
}
/* Function to insert */
public void insert(int value)
{
if (value > 0)
{
BinomialHeapNode temp = new BinomialHeapNode(value);
if (Nodes == null)
{
Nodes = temp;
size = 1;
}
else
{
unionNodes(temp);
size++;
}
}
}
/* Function to unite two binomial heaps */
private void merge(BinomialHeapNode binHeap)
{
BinomialHeapNode temp1 = Nodes, temp2 = binHeap;
while ((temp1 != null) && (temp2 != null))
{
if (temp1.degree == temp2.degree)
{
BinomialHeapNode tmp = temp2;
temp2 = temp2.sibling;
tmp.sibling = temp1.sibling;
temp1.sibling = tmp;
temp1 = tmp.sibling;
}
else
{
if (temp1.degree < temp2.degree)
{
if ((temp1.sibling == null) || (temp1.sibling.degree > temp2.degree))
{
BinomialHeapNode tmp = temp2;
temp2 = temp2.sibling;
tmp.sibling = temp1.sibling;
temp1.sibling = tmp;
temp1 = tmp.sibling;
}
else
{
temp1 = temp1.sibling;
}
}
else
{
BinomialHeapNode tmp = temp1;
temp1 = temp2;
temp2 = temp2.sibling;
temp1.sibling = tmp;
if (tmp == Nodes)
{
Nodes = temp1;
}
else
{
}
}
}
}
if (temp1 == null)
{
temp1 = Nodes;
while (temp1.sibling != null)
{
temp1 = temp1.sibling;
}
temp1.sibling = temp2;
}
else
{
}
}
/* Function for union of nodes */
private void unionNodes(BinomialHeapNode binHeap)
{
merge(binHeap);
BinomialHeapNode prevTemp = null, temp = Nodes, nextTemp = Nodes.sibling;
while (nextTemp != null)
{
if ((temp.degree != nextTemp.degree) || ((nextTemp.sibling != null) && (nextTemp.sibling.degree == temp.degree)))
{
prevTemp = temp;
temp = nextTemp;
}
else
{
if (temp.key <= nextTemp.key)
{
temp.sibling = nextTemp.sibling;
nextTemp.parent = temp;
nextTemp.sibling = temp.child;
temp.child = nextTemp;
temp.degree++;
}
else
{
if (prevTemp == null)
{
Nodes = nextTemp;
}
else
{
prevTemp.sibling = nextTemp;
}
temp.parent = nextTemp;
temp.sibling = nextTemp.child;
nextTemp.child = temp;
nextTemp.degree++;
temp = nextTemp;
}
}
nextTemp = temp.sibling;
}
}
/* Function to return minimum key */
public int findMinimum()
{
return Nodes.findMinNode().key;
}
/* Function to delete a particular element */
public void delete(int value)
{
if ((Nodes != null) && (Nodes.findANodeWithKey(value) != null))
{
decreaseKeyValue(value, findMinimum() - 1);
extractMin();
}
}
/* Function to decrease key with a given value */
public void decreaseKeyValue(int old_value, int new_value)
{
BinomialHeapNode temp = Nodes.findANodeWithKey(old_value);
if (temp == null)
return;
temp.key = new_value;
BinomialHeapNode tempParent = temp.parent;
while ((tempParent != null) && (temp.key < tempParent.key))
{
int z = temp.key;
temp.key = tempParent.key;
tempParent.key = z;
temp = tempParent;
tempParent = tempParent.parent;
}
}
/* Function to extract the node with the minimum key */
public int extractMin()
{
if (Nodes == null)
return -1;
BinomialHeapNode temp = Nodes, prevTemp = null;
BinomialHeapNode minNode = Nodes.findMinNode();
while (temp.key != minNode.key)
{
prevTemp = temp;
temp = temp.sibling;
}
if (prevTemp == null)
{
Nodes = temp.sibling;
}
else
{
prevTemp.sibling = temp.sibling;
}
temp = temp.child;
BinomialHeapNode fakeNode = temp;
while (temp != null)
{
temp.parent = null;
temp = temp.sibling;
}
if ((Nodes == null) && (fakeNode == null))
{
size = 0;
}
else
{
if ((Nodes == null) && (fakeNode != null))
{
Nodes = fakeNode.reverse(null);
size = Nodes.getSize();
}
else
{
if ((Nodes != null) && (fakeNode == null))
{
size = Nodes.getSize();
}
else
{
unionNodes(fakeNode.reverse(null));
size = Nodes.getSize();
}
}
}
return minNode.key;
}
/* Function to display heap */
public void displayHeap()
{
System.out.print("\nHeap : ");
displayHeap(Nodes);
System.out.println("\n");
}
private void displayHeap(BinomialHeapNode r)
{
if (r != null)
{
displayHeap(r.child);
System.out.print(r.key +" ");
displayHeap(r.sibling);
}
}
}
/* Class BinomialHeapTest */
public class BinomialHeapTest
{
public static void main(String[] args)
{
Scanner scan = new Scanner(System.in);
System.out.println("Binomial Heap Test\n\n");
/* Make object of BinomialHeap */
BinomialHeap bh = new BinomialHeap( );
char ch;
/* Perform BinomialHeap operations */
do
{
System.out.println("\nBinomialHeap Operations\n");
System.out.println("1. insert ");
System.out.println("2. delete ");
System.out.println("3. size");
System.out.println("4. check empty");
System.out.println("5. clear");
int choice = scan.nextInt();
switch (choice)
{
case 1 :
System.out.println("Enter integer element to insert");
bh.insert( scan.nextInt() );
break;
case 2 :
System.out.println("Enter element to delete ");
bh.delete( scan.nextInt() );
break;
case 3 :
System.out.println("Size = "+ bh.getSize());
break;
case 4 :
System.out.println("Empty status = "+ bh.isEmpty());
break;
case 5 :
bh.makeEmpty();
System.out.println("Heap Cleared\n");
break;
default :
System.out.println("Wrong Entry \n ");
break;
}
/* Display heap */
bh.displayHeap();
System.out.println("\nDo you want to continue (Type y or n) \n");
ch = scan.next().charAt(0);
} while (ch == 'Y'|| ch == 'y');
}
}
Binomial Heap Test BinomialHeap Operations 1. insert 2. delete 3. size 4. check empty 5. clear 1 Enter integer element to insert 73 Heap : 73 Do you want to continue (Type y or n) y BinomialHeap Operations 1. insert 2. delete 3. size 4. check empty 5. clear 1 Enter integer element to insert 19 Heap : 73 19 Do you want to continue (Type y or n) y BinomialHeap Operations 1. insert 2. delete 3. size 4. check empty 5. clear 1 Enter integer element to insert 24 Heap : 24 73 19 Do you want to continue (Type y or n) y BinomialHeap Operations 1. insert 2. delete 3. size 4. check empty 5. clear 1 Enter integer element to insert 51 Heap : 51 24 73 19 Do you want to continue (Type y or n) y BinomialHeap Operations 1. insert 2. delete 3. size 4. check empty 5. clear 1 Enter integer element to insert 99 Heap : 99 51 24 73 19 Do you want to continue (Type y or n) y BinomialHeap Operations 1. insert 2. delete 3. size 4. check empty 5. clear 3 Size = 5 Heap : 99 51 24 73 19 Do you want to continue (Type y or n) y BinomialHeap Operations 1. insert 2. delete 3. size 4. check empty 5. clear 2 Enter element to delete 51 Heap : 99 73 24 19 Do you want to continue (Type y or n) y BinomialHeap Operations 1. insert 2. delete 3. size 4. check empty 5. clear 5 Heap Cleared Heap : Do you want to continue (Type y or n) y BinomialHeap Operations 1. insert 2. delete 3. size 4. check empty 5. clear 4 Empty status = true Heap : Do you want to continue (Type y or n) n
Related posts:
A Guide to the ViewResolver in Spring MVC
Posting with HttpClient
Từ khóa static và final trong java
Simple Single Sign-On with Spring Security OAuth2
Java Program to Implement CopyOnWriteArrayList API
Giới thiệu Design Patterns
Java Program to Implement Sorted Circular Doubly Linked List
A Guide to Queries in Spring Data MongoDB
Java Program to Perform Preorder Recursive Traversal of a Given Binary Tree
Convert String to Byte Array and Reverse in Java
Apache Commons Collections SetUtils
Java Program to Implement Pagoda
How to Set TLS Version in Apache HttpClient
Immutable Map Implementations in Java
SOAP Web service: Upload và Download file sử dụng MTOM trong JAX-WS
Giới thiệu thư viện Apache Commons Chain
Java Program to Find Minimum Element in an Array using Linear Search
Lập trình đa luồng với CompletableFuture trong Java 8
Intersection of Two Lists in Java
Spring Boot Application as a Service
Java Program to Implement Sieve Of Eratosthenes
Converting Between Byte Arrays and Hexadecimal Strings in Java
Java Program to Implement Control Table
Hướng dẫn Java Design Pattern – Visitor
Java Program to Find MST (Minimum Spanning Tree) using Kruskal’s Algorithm
Java Program to Implement HashMap API
Java Program to Implement Hash Tables
Java – Byte Array to Reader
Java Program to Find Median of Elements where Elements are Stored in 2 Different Arrays
Java Program to Implement HashTable API
Hamcrest Collections Cookbook
Introduction to Apache Commons Text