This is a Java Program to implement Graham Scan Algorithm. Graham’s scan is a method of computing the convex hull of a finite set of points in the plane with time complexity O(n log n).
Here is the source code of the Java Program to Implement Graham Scan Algorithm to Find the Convex Hull. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a java program to implement Graham Scan Algorithm import java.util.Arrays; import java.util.Comparator; import java.util.Scanner; import java.util.Stack; class Point2D implements Comparable<Point2D> { public static final Comparator<Point2D> X_ORDER = new XOrder(); public static final Comparator<Point2D> Y_ORDER = new YOrder(); public static final Comparator<Point2D> R_ORDER = new ROrder(); public final Comparator<Point2D> POLAR_ORDER = new PolarOrder(); public final Comparator<Point2D> ATAN2_ORDER = new Atan2Order(); public final Comparator<Point2D> DISTANCE_TO_ORDER = new DistanceToOrder(); private final double x; // x coordinate private final double y; // y coordinate public Point2D(double x, double y) { if (Double.isInfinite(x) || Double.isInfinite(y)) throw new IllegalArgumentException("Coordinates must be finite"); if (Double.isNaN(x) || Double.isNaN(y)) throw new IllegalArgumentException("Coordinates cannot be NaN"); if (x == 0.0) x = 0.0; // convert -0.0 to +0.0 if (y == 0.0) y = 0.0; // convert -0.0 to +0.0 this.x = x; this.y = y; } public double x() { return x; } public double y() { return y; } public double r() { return Math.sqrt(x * x + y * y); } public double theta() { return Math.atan2(y, x); } private double angleTo(Point2D that) { double dx = that.x - this.x; double dy = that.y - this.y; return Math.atan2(dy, dx); } public static int ccw(Point2D a, Point2D b, Point2D c) { double area2 = (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x); if (area2 < 0) return -1; else if (area2 > 0) return +1; else return 0; } public static double area2(Point2D a, Point2D b, Point2D c) { return (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x); } public double distanceTo(Point2D that) { double dx = this.x - that.x; double dy = this.y - that.y; return Math.sqrt(dx * dx + dy * dy); } public double distanceSquaredTo(Point2D that) { double dx = this.x - that.x; double dy = this.y - that.y; return dx * dx + dy * dy; } public int compareTo(Point2D that) { if (this.y < that.y) return -1; if (this.y > that.y) return +1; if (this.x < that.x) return -1; if (this.x > that.x) return +1; return 0; } private static class XOrder implements Comparator<Point2D> { public int compare(Point2D p, Point2D q) { if (p.x < q.x) return -1; if (p.x > q.x) return +1; return 0; } } private static class YOrder implements Comparator<Point2D> { public int compare(Point2D p, Point2D q) { if (p.y < q.y) return -1; if (p.y > q.y) return +1; return 0; } } private static class ROrder implements Comparator<Point2D> { public int compare(Point2D p, Point2D q) { double delta = (p.x * p.x + p.y * p.y) - (q.x * q.x + q.y * q.y); if (delta < 0) return -1; if (delta > 0) return +1; return 0; } } private class Atan2Order implements Comparator<Point2D> { public int compare(Point2D q1, Point2D q2) { double angle1 = angleTo(q1); double angle2 = angleTo(q2); if (angle1 < angle2) return -1; else if (angle1 > angle2) return +1; else return 0; } } private class PolarOrder implements Comparator<Point2D> { public int compare(Point2D q1, Point2D q2) { double dx1 = q1.x - x; double dy1 = q1.y - y; double dx2 = q2.x - x; double dy2 = q2.y - y; if (dy1 >= 0 && dy2 < 0) return -1; // q1 above; q2 below else if (dy2 >= 0 && dy1 < 0) return +1; // q1 below; q2 above else if (dy1 == 0 && dy2 == 0) { // 3-collinear and horizontal if (dx1 >= 0 && dx2 < 0) return -1; else if (dx2 >= 0 && dx1 < 0) return +1; else return 0; } else return -ccw(Point2D.this, q1, q2); // both above or below } } private class DistanceToOrder implements Comparator<Point2D> { public int compare(Point2D p, Point2D q) { double dist1 = distanceSquaredTo(p); double dist2 = distanceSquaredTo(q); if (dist1 < dist2) return -1; else if (dist1 > dist2) return +1; else return 0; } } public boolean equals(Object other) { if (other == this) return true; if (other == null) return false; if (other.getClass() != this.getClass()) return false; Point2D that = (Point2D) other; return this.x == that.x && this.y == that.y; } public String toString() { return "(" + x + ", " + y + ")"; } public int hashCode() { int hashX = ((Double) x).hashCode(); int hashY = ((Double) y).hashCode(); return 31 * hashX + hashY; } } public class GrahamScan { private Stack<Point2D> hull = new Stack<Point2D>(); public GrahamScan(Point2D[] pts) { // defensive copy int N = pts.length; Point2D[] points = new Point2D[N]; for (int i = 0; i < N; i++) points[i] = pts[i]; Arrays.sort(points); Arrays.sort(points, 1, N, points[0].POLAR_ORDER); hull.push(points[0]); // p[0] is first extreme point int k1; for (k1 = 1; k1 < N; k1++) if (!points[0].equals(points[k1])) break; if (k1 == N) return; // all points equal int k2; for (k2 = k1 + 1; k2 < N; k2++) if (Point2D.ccw(points[0], points[k1], points[k2]) != 0) break; hull.push(points[k2 - 1]); // points[k2-1] is second extreme point for (int i = k2; i < N; i++) { Point2D top = hull.pop(); while (Point2D.ccw(hull.peek(), top, points[i]) <= 0) { top = hull.pop(); } hull.push(top); hull.push(points[i]); } assert isConvex(); } public Iterable<Point2D> hull() { Stack<Point2D> s = new Stack<Point2D>(); for (Point2D p : hull) s.push(p); return s; } private boolean isConvex() { int N = hull.size(); if (N <= 2) return true; Point2D[] points = new Point2D[N]; int n = 0; for (Point2D p : hull()) { points[n++] = p; } for (int i = 0; i < N; i++) { if (Point2D .ccw(points[i], points[(i + 1) % N], points[(i + 2) % N]) <= 0) { return false; } } return true; } // test client public static void main(String[] args) { System.out.println("Graham Scan Test"); Scanner sc = new Scanner(System.in); System.out.println("Enter the number of points"); int N = sc.nextInt(); Point2D[] points = new Point2D[N]; System.out.println("Enter the coordinates of each points: <x> <y>"); for (int i = 0; i < N; i++) { int x = sc.nextInt(); int y = sc.nextInt(); points[i] = new Point2D(x, y); } GrahamScan graham = new GrahamScan(points); System.out.println("The convex hull consists of following points: "); for (Point2D p : graham.hull()) System.out.println(p); sc.close(); } }
Output:
$ javac GrahamScan.java $ java GrahamScan Graham Scan Test Enter the number of points 5 Enter the coordinates of each points: <x> <y> 1 2 2 3 4 5 20 10 6 4 The convex hull consists of following points: (1.0, 2.0) (6.0, 4.0) (20.0, 10.0) (4.0, 5.0) Graham Scan Test Enter the number of points 5 Enter the coordinates of each points: <x> <y> 1 2 2 3 3 4 4 5 5 6 The convex hull consists of following points: (1.0, 2.0) (5.0, 6.0)
Related posts:
Giới thiệu Aspect Oriented Programming (AOP)
Hướng dẫn Java Design Pattern – Transfer Object
Spring Cloud – Bootstrapping
Hướng dẫn Java Design Pattern – MVC
So sánh Array và ArrayList trong Java
Guide to the Volatile Keyword in Java
@Before vs @BeforeClass vs @BeforeEach vs @BeforeAll
Spring MVC Custom Validation
Java Program to Check if a Given Graph Contain Hamiltonian Cycle or Not
Java Program to Perform Inorder Non-Recursive Traversal of a Given Binary Tree
Java Collections Interview Questions
Java Program to Implement Vector API
Java Program to Implement SynchronosQueue API
Tính đa hình (Polymorphism) trong Java
Java Program to Generate a Sequence of N Characters for a Given Specific Case
Java Program to Implement Cartesian Tree
Quick Guide to Spring Controllers
How to Delay Code Execution in Java
HttpClient Connection Management
An Intro to Spring Cloud Vault
Java Program to Implement Min Hash
Java Program to Perform String Matching Using String Library
Giới thiệu Google Guice – Aspect Oriented Programming (AOP)
A Guide to TreeMap in Java
Hướng dẫn kết nối cơ sở dữ liệu với Java JDBC
Java Program to Implement Ternary Heap
Getting Started with GraphQL and Spring Boot
Java Program to Implement Regular Falsi Algorithm
Java Program to Find the Minimum value of Binary Search Tree
Spring Boot - Web Socket
Java Program to Perform Deletion in a BST
Java Program to Find Number of Articulation points in a Graph