This is java program to solve the system of linear equations. This can be done by first representing equations(vectors) to matrix form, then finding the inverse of the matrix formed by the coefficients of variable and multiplying it with constants.
Here is the source code of the Java Program to Solve any Linear Equation in One Variable. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a sample program to solve the linear equations. import java.util.Scanner; public class Solve_Linear_Equation { public static void main(String args[]) { char []var = {'x', 'y', 'z', 'w'}; System.out.println("Enter the number of variables in the equations: "); Scanner input = new Scanner(System.in); int n = input.nextInt(); System.out.println("Enter the coefficients of each variable for each equations"); System.out.println("ax + by + cz + ... = d"); double [][]mat = new double[n][n]; double [][]constants = new double[n][1]; //input for(int i=0; i<n; i++) { for(int j=0; j<n; j++) { mat[i][j] = input.nextDouble(); } constants[i][0] = input.nextDouble(); } //Matrix representation for(int i=0; i<n; i++) { for(int j=0; j<n; j++) { System.out.print(" "+mat[i][j]); } System.out.print(" "+ var[i]); System.out.print(" = "+ constants[i][0]); System.out.println(); } //inverse of matrix mat[][] double inverted_mat[][] = invert(mat); System.out.println("The inverse is: "); for (int i=0; i<n; ++i) { for (int j=0; j<n; ++j) { System.out.print(inverted_mat[i][j]+" "); } System.out.println(); } //Multiplication of mat inverse and constants double result[][] = new double[n][1]; for (int i = 0; i < n; i++) { for (int j = 0; j < 1; j++) { for (int k = 0; k < n; k++) { result[i][j] = result[i][j] + inverted_mat[i][k] * constants[k][j]; } } } System.out.println("The product is:"); for(int i=0; i<n; i++) { System.out.println(result[i][0] + " "); } input.close(); } public static double[][] invert(double a[][]) { int n = a.length; double x[][] = new double[n][n]; double b[][] = new double[n][n]; int index[] = new int[n]; for (int i=0; i<n; ++i) b[i][i] = 1; // Transform the matrix into an upper triangle gaussian(a, index); // Update the matrix b[i][j] with the ratios stored for (int i=0; i<n-1; ++i) for (int j=i+1; j<n; ++j) for (int k=0; k<n; ++k) b[index[j]][k] -= a[index[j]][i]*b[index[i]][k]; // Perform backward substitutions for (int i=0; i<n; ++i) { x[n-1][i] = b[index[n-1]][i]/a[index[n-1]][n-1]; for (int j=n-2; j>=0; --j) { x[j][i] = b[index[j]][i]; for (int k=j+1; k<n; ++k) { x[j][i] -= a[index[j]][k]*x[k][i]; } x[j][i] /= a[index[j]][j]; } } return x; } // Method to carry out the partial-pivoting Gaussian // elimination. Here index[] stores pivoting order. public static void gaussian(double a[][], int index[]) { int n = index.length; double c[] = new double[n]; // Initialize the index for (int i=0; i<n; ++i) index[i] = i; // Find the rescaling factors, one from each row for (int i=0; i<n; ++i) { double c1 = 0; for (int j=0; j<n; ++j) { double c0 = Math.abs(a[i][j]); if (c0 > c1) c1 = c0; } c[i] = c1; } // Search the pivoting element from each column int k = 0; for (int j=0; j<n-1; ++j) { double pi1 = 0; for (int i=j; i<n; ++i) { double pi0 = Math.abs(a[index[i]][j]); pi0 /= c[index[i]]; if (pi0 > pi1) { pi1 = pi0; k = i; } } // Interchange rows according to the pivoting order int itmp = index[j]; index[j] = index[k]; index[k] = itmp; for (int i=j+1; i<n; ++i) { double pj = a[index[i]][j]/a[index[j]][j]; // Record pivoting ratios below the diagonal a[index[i]][j] = pj; // Modify other elements accordingly for (int l=j+1; l<n; ++l) a[index[i]][l] -= pj*a[index[j]][l]; } } } }
Output:
$ javac Solve_Linear_Equation.java $ java Solve_Linear_Equation Enter the number of variables in the equations: 2 Enter the coefficients of each variable for each equations ax + by + cz + ... = d 1 2 3 3 2 1 1.0 2.0 x = 3.0 3.0 2.0 y = 1.0 The inverse is: -0.49999999999999994 0.5 0.7499999999999999 -0.24999999999999997 The product is: -0.9999999999999998 1.9999999999999996
Related posts:
Converting Between Byte Arrays and Hexadecimal Strings in Java
Quick Guide to the Java StringTokenizer
Java Program to Generate Random Numbers Using Probability Distribution Function
Java Program to Describe the Representation of Graph using Adjacency List
Spring WebClient Requests with Parameters
Spring REST API with Protocol Buffers
Hướng dẫn Java Design Pattern – Strategy
Spring JDBC
Java Program to Find Minimum Number of Edges to Cut to make the Graph Disconnected
New in Spring Security OAuth2 – Verify Claims
Lập trình đa luồng với Callable và Future trong Java
Redirect to Different Pages after Login with Spring Security
Java Program to Implement Patricia Trie
Chuyển đổi Array sang ArrayList và ngược lại
Java Program to Implement Randomized Binary Search Tree
Guide to Spring Cloud Kubernetes
Fixing 401s with CORS Preflights and Spring Security
REST Pagination in Spring
A Quick JUnit vs TestNG Comparison
Java Program to Implement Circular Doubly Linked List
Using Spring ResponseEntity to Manipulate the HTTP Response
Loại bỏ các phần tử trùng trong một ArrayList như thế nào trong Java 8?
OAuth2 for a Spring REST API – Handle the Refresh Token in Angular
Java Program to Find Whether a Path Exists Between 2 Given Nodes
Spring Security Logout
Extract links from an HTML page
Java Perform to a 2D FFT Inplace Given a Complex 2D Array
Spring Boot Gradle Plugin
Java Program to Print only Odd Numbered Levels of a Tree
Java Program to Implement the Hill Cypher
HandlerAdapters in Spring MVC
So sánh ArrayList và LinkedList trong Java