This is java program to solve the system of linear equations. This can be done by first representing equations(vectors) to matrix form, then finding the inverse of the matrix formed by the coefficients of variable and multiplying it with constants.
Here is the source code of the Java Program to Solve any Linear Equation in One Variable. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a sample program to solve the linear equations. import java.util.Scanner; public class Solve_Linear_Equation { public static void main(String args[]) { char []var = {'x', 'y', 'z', 'w'}; System.out.println("Enter the number of variables in the equations: "); Scanner input = new Scanner(System.in); int n = input.nextInt(); System.out.println("Enter the coefficients of each variable for each equations"); System.out.println("ax + by + cz + ... = d"); double [][]mat = new double[n][n]; double [][]constants = new double[n][1]; //input for(int i=0; i<n; i++) { for(int j=0; j<n; j++) { mat[i][j] = input.nextDouble(); } constants[i][0] = input.nextDouble(); } //Matrix representation for(int i=0; i<n; i++) { for(int j=0; j<n; j++) { System.out.print(" "+mat[i][j]); } System.out.print(" "+ var[i]); System.out.print(" = "+ constants[i][0]); System.out.println(); } //inverse of matrix mat[][] double inverted_mat[][] = invert(mat); System.out.println("The inverse is: "); for (int i=0; i<n; ++i) { for (int j=0; j<n; ++j) { System.out.print(inverted_mat[i][j]+" "); } System.out.println(); } //Multiplication of mat inverse and constants double result[][] = new double[n][1]; for (int i = 0; i < n; i++) { for (int j = 0; j < 1; j++) { for (int k = 0; k < n; k++) { result[i][j] = result[i][j] + inverted_mat[i][k] * constants[k][j]; } } } System.out.println("The product is:"); for(int i=0; i<n; i++) { System.out.println(result[i][0] + " "); } input.close(); } public static double[][] invert(double a[][]) { int n = a.length; double x[][] = new double[n][n]; double b[][] = new double[n][n]; int index[] = new int[n]; for (int i=0; i<n; ++i) b[i][i] = 1; // Transform the matrix into an upper triangle gaussian(a, index); // Update the matrix b[i][j] with the ratios stored for (int i=0; i<n-1; ++i) for (int j=i+1; j<n; ++j) for (int k=0; k<n; ++k) b[index[j]][k] -= a[index[j]][i]*b[index[i]][k]; // Perform backward substitutions for (int i=0; i<n; ++i) { x[n-1][i] = b[index[n-1]][i]/a[index[n-1]][n-1]; for (int j=n-2; j>=0; --j) { x[j][i] = b[index[j]][i]; for (int k=j+1; k<n; ++k) { x[j][i] -= a[index[j]][k]*x[k][i]; } x[j][i] /= a[index[j]][j]; } } return x; } // Method to carry out the partial-pivoting Gaussian // elimination. Here index[] stores pivoting order. public static void gaussian(double a[][], int index[]) { int n = index.length; double c[] = new double[n]; // Initialize the index for (int i=0; i<n; ++i) index[i] = i; // Find the rescaling factors, one from each row for (int i=0; i<n; ++i) { double c1 = 0; for (int j=0; j<n; ++j) { double c0 = Math.abs(a[i][j]); if (c0 > c1) c1 = c0; } c[i] = c1; } // Search the pivoting element from each column int k = 0; for (int j=0; j<n-1; ++j) { double pi1 = 0; for (int i=j; i<n; ++i) { double pi0 = Math.abs(a[index[i]][j]); pi0 /= c[index[i]]; if (pi0 > pi1) { pi1 = pi0; k = i; } } // Interchange rows according to the pivoting order int itmp = index[j]; index[j] = index[k]; index[k] = itmp; for (int i=j+1; i<n; ++i) { double pj = a[index[i]][j]/a[index[j]][j]; // Record pivoting ratios below the diagonal a[index[i]][j] = pj; // Modify other elements accordingly for (int l=j+1; l<n; ++l) a[index[i]][l] -= pj*a[index[j]][l]; } } } }
Output:
$ javac Solve_Linear_Equation.java $ java Solve_Linear_Equation Enter the number of variables in the equations: 2 Enter the coefficients of each variable for each equations ax + by + cz + ... = d 1 2 3 3 2 1 1.0 2.0 x = 3.0 3.0 2.0 y = 1.0 The inverse is: -0.49999999999999994 0.5 0.7499999999999999 -0.24999999999999997 The product is: -0.9999999999999998 1.9999999999999996
Related posts:
Làm thế nào tạo instance của một class mà không gọi từ khóa new?
Spring Boot - Enabling Swagger2
Java Program to Find kth Largest Element in a Sequence
Spring – Injecting Collections
Introduction to Spliterator in Java
Spring Data Reactive Repositories with MongoDB
Java Program to Implement ConcurrentHashMap API
Java Program to Implement wheel Sieve to Generate Prime Numbers Between Given Range
Adding Shutdown Hooks for JVM Applications
Spring Boot - Tomcat Port Number
Custom Error Pages with Spring MVC
Iterating over Enum Values in Java
Setting Up Swagger 2 with a Spring REST API
Java Program to Permute All Letters of an Input String
Giới thiệu java.io.tmpdir
Java Program to Perform integer Partition for a Specific Case
Limiting Query Results with JPA and Spring Data JPA
A Quick Guide to Using Keycloak with Spring Boot
Converting Between Byte Arrays and Hexadecimal Strings in Java
Spring Boot - CORS Support
Giới thiệu Json Web Token (JWT)
Spring Boot Application as a Service
Introduction to Spring Data JPA
Java Program to Implement Heap’s Algorithm for Permutation of N Numbers
JUnit 5 for Kotlin Developers
Java Program to Implement Threaded Binary Tree
Auditing with JPA, Hibernate, and Spring Data JPA
Java Program to Implement Find all Cross Edges in a Graph
Running Spring Boot Applications With Minikube
LinkedHashSet trong Java hoạt động như thế nào?
Java – Reader to String
Java Program to Implement D-ary-Heap