This is java program to solve the system of linear equations. This can be done by first representing equations(vectors) to matrix form, then finding the inverse of the matrix formed by the coefficients of variable and multiplying it with constants.
Here is the source code of the Java Program to Solve any Linear Equation in One Variable. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a sample program to solve the linear equations. import java.util.Scanner; public class Solve_Linear_Equation { public static void main(String args[]) { char []var = {'x', 'y', 'z', 'w'}; System.out.println("Enter the number of variables in the equations: "); Scanner input = new Scanner(System.in); int n = input.nextInt(); System.out.println("Enter the coefficients of each variable for each equations"); System.out.println("ax + by + cz + ... = d"); double [][]mat = new double[n][n]; double [][]constants = new double[n][1]; //input for(int i=0; i<n; i++) { for(int j=0; j<n; j++) { mat[i][j] = input.nextDouble(); } constants[i][0] = input.nextDouble(); } //Matrix representation for(int i=0; i<n; i++) { for(int j=0; j<n; j++) { System.out.print(" "+mat[i][j]); } System.out.print(" "+ var[i]); System.out.print(" = "+ constants[i][0]); System.out.println(); } //inverse of matrix mat[][] double inverted_mat[][] = invert(mat); System.out.println("The inverse is: "); for (int i=0; i<n; ++i) { for (int j=0; j<n; ++j) { System.out.print(inverted_mat[i][j]+" "); } System.out.println(); } //Multiplication of mat inverse and constants double result[][] = new double[n][1]; for (int i = 0; i < n; i++) { for (int j = 0; j < 1; j++) { for (int k = 0; k < n; k++) { result[i][j] = result[i][j] + inverted_mat[i][k] * constants[k][j]; } } } System.out.println("The product is:"); for(int i=0; i<n; i++) { System.out.println(result[i][0] + " "); } input.close(); } public static double[][] invert(double a[][]) { int n = a.length; double x[][] = new double[n][n]; double b[][] = new double[n][n]; int index[] = new int[n]; for (int i=0; i<n; ++i) b[i][i] = 1; // Transform the matrix into an upper triangle gaussian(a, index); // Update the matrix b[i][j] with the ratios stored for (int i=0; i<n-1; ++i) for (int j=i+1; j<n; ++j) for (int k=0; k<n; ++k) b[index[j]][k] -= a[index[j]][i]*b[index[i]][k]; // Perform backward substitutions for (int i=0; i<n; ++i) { x[n-1][i] = b[index[n-1]][i]/a[index[n-1]][n-1]; for (int j=n-2; j>=0; --j) { x[j][i] = b[index[j]][i]; for (int k=j+1; k<n; ++k) { x[j][i] -= a[index[j]][k]*x[k][i]; } x[j][i] /= a[index[j]][j]; } } return x; } // Method to carry out the partial-pivoting Gaussian // elimination. Here index[] stores pivoting order. public static void gaussian(double a[][], int index[]) { int n = index.length; double c[] = new double[n]; // Initialize the index for (int i=0; i<n; ++i) index[i] = i; // Find the rescaling factors, one from each row for (int i=0; i<n; ++i) { double c1 = 0; for (int j=0; j<n; ++j) { double c0 = Math.abs(a[i][j]); if (c0 > c1) c1 = c0; } c[i] = c1; } // Search the pivoting element from each column int k = 0; for (int j=0; j<n-1; ++j) { double pi1 = 0; for (int i=j; i<n; ++i) { double pi0 = Math.abs(a[index[i]][j]); pi0 /= c[index[i]]; if (pi0 > pi1) { pi1 = pi0; k = i; } } // Interchange rows according to the pivoting order int itmp = index[j]; index[j] = index[k]; index[k] = itmp; for (int i=j+1; i<n; ++i) { double pj = a[index[i]][j]/a[index[j]][j]; // Record pivoting ratios below the diagonal a[index[i]][j] = pj; // Modify other elements accordingly for (int l=j+1; l<n; ++l) a[index[i]][l] -= pj*a[index[j]][l]; } } } }
Output:
$ javac Solve_Linear_Equation.java $ java Solve_Linear_Equation Enter the number of variables in the equations: 2 Enter the coefficients of each variable for each equations ax + by + cz + ... = d 1 2 3 3 2 1 1.0 2.0 x = 3.0 3.0 2.0 y = 1.0 The inverse is: -0.49999999999999994 0.5 0.7499999999999999 -0.24999999999999997 The product is: -0.9999999999999998 1.9999999999999996
Related posts:
Java Program to Implement Slicker Algorithm that avoids Triangulation to Find Area of a Polygon
Hướng dẫn Java Design Pattern – Chain of Responsibility
Tổng quan về ngôn ngữ lập trình java
Convert a Map to an Array, List or Set in Java
Thực thi nhiều tác vụ cùng lúc như thế nào trong Java?
CyclicBarrier in Java
Dynamic Proxies in Java
Tạo số và chuỗi ngẫu nhiên trong Java
Map Interface trong java
Testing in Spring Boot
Java Program to Implement Suffix Array
The Spring @Controller and @RestController Annotations
REST Web service: Tạo ứng dụng Java RESTful Client với Jersey Client 2.x
Spring Boot - Database Handling
Spring Boot - Build Systems
Java Program to Perform Inorder Non-Recursive Traversal of a Given Binary Tree
JUnit 5 @Test Annotation
Hướng dẫn Java Design Pattern – Service Locator
Hướng dẫn sử dụng Java String, StringBuffer và StringBuilder
Intro to the Jackson ObjectMapper
Spring Boot Application as a Service
Java Program to Generate Random Numbers Using Probability Distribution Function
Hashtable trong java
Java Program to Implement RenderingHints API
Spring Security with Maven
Java Program to Implement the String Search Algorithm for Short Text Sizes
Comparing getPath(), getAbsolutePath(), and getCanonicalPath() in Java
Login For a Spring Web App – Error Handling and Localization
Documenting a Spring REST API Using OpenAPI 3.0
List Interface trong Java
File Upload with Spring MVC
Java Program to Implement Jarvis Algorithm