This is a Java Program to implement 3D KD Tree and Search an element. In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of binary space partitioning trees.
Here is the source code of the Java Program to Find Location of a Point Placed in Three Dimensions Using K-D Trees. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a java program to find the location of point in 3 dimensional KD Tree import java.io.IOException; import java.util.Scanner; class KD3DNode { int axis; double[] x; int id; boolean checked; boolean orientation; KD3DNode Parent; KD3DNode Left; KD3DNode Right; public KD3DNode(double[] x0, int axis0) { x = new double[3]; axis = axis0; for (int k = 0; k < 3; k++) x[k] = x0[k]; Left = Right = Parent = null; checked = false; id = 0; } public KD3DNode FindParent(double[] x0) { KD3DNode parent = null; KD3DNode next = this; int split; while (next != null) { split = next.axis; parent = next; if (x0[split] > next.x[split]) next = next.Right; else next = next.Left; } return parent; } public KD3DNode Insert(double[] p) { x = new double[3]; KD3DNode parent = FindParent(p); if (equal(p, parent.x, 3) == true) return null; KD3DNode newNode = new KD3DNode(p, parent.axis + 1 < 3 ? parent.axis + 1 : 0); newNode.Parent = parent; if (p[parent.axis] > parent.x[parent.axis]) { parent.Right = newNode; newNode.orientation = true; // } else { parent.Left = newNode; newNode.orientation = false; // } return newNode; } boolean equal(double[] x1, double[] x2, int dim) { for (int k = 0; k < dim; k++) { if (x1[k] != x2[k]) return false; } return true; } double distance2(double[] x1, double[] x2, int dim) { double S = 0; for (int k = 0; k < dim; k++) S += (x1[k] - x2[k]) * (x1[k] - x2[k]); return S; } } class KD3DTree { KD3DNode Root; int TimeStart, TimeFinish; int CounterFreq; double d_min; KD3DNode nearest_neighbour; int KD_id; int nList; KD3DNode CheckedNodes[]; int checked_nodes; KD3DNode List[]; double x_min[], x_max[]; boolean max_boundary[], min_boundary[]; int n_boundary; public KD3DTree(int i) { Root = null; KD_id = 1; nList = 0; List = new KD3DNode[i]; CheckedNodes = new KD3DNode[i]; max_boundary = new boolean[3]; min_boundary = new boolean[3]; x_min = new double[3]; x_max = new double[3]; } public boolean add(double[] x) { if (nList >= 2000000 - 1) return false; // can't add more points if (Root == null) { Root = new KD3DNode(x, 0); Root.id = KD_id++; List[nList++] = Root; } else { KD3DNode pNode; if ((pNode = Root.Insert(x)) != null) { pNode.id = KD_id++; List[nList++] = pNode; } } return true; } public KD3DNode find_nearest(double[] x) { if (Root == null) return null; checked_nodes = 0; KD3DNode parent = Root.FindParent(x); nearest_neighbour = parent; d_min = Root.distance2(x, parent.x, 3); ; if (parent.equal(x, parent.x, 3) == true) return nearest_neighbour; search_parent(parent, x); uncheck(); return nearest_neighbour; } public void check_subtree(KD3DNode node, double[] x) { if ((node == null) || node.checked) return; CheckedNodes[checked_nodes++] = node; node.checked = true; set_bounding_cube(node, x); int dim = node.axis; double d = node.x[dim] - x[dim]; if (d * d > d_min) { if (node.x[dim] > x[dim]) check_subtree(node.Left, x); else check_subtree(node.Right, x); } else { check_subtree(node.Left, x); check_subtree(node.Right, x); } } public void set_bounding_cube(KD3DNode node, double[] x) { if (node == null) return; int d = 0; double dx; for (int k = 0; k < 3; k++) { dx = node.x[k] - x[k]; if (dx > 0) { dx *= dx; if (!max_boundary[k]) { if (dx > x_max[k]) x_max[k] = dx; if (x_max[k] > d_min) { max_boundary[k] = true; n_boundary++; } } } else { dx *= dx; if (!min_boundary[k]) { if (dx > x_min[k]) x_min[k] = dx; if (x_min[k] > d_min) { min_boundary[k] = true; n_boundary++; } } } d += dx; if (d > d_min) return; } if (d < d_min) { d_min = d; nearest_neighbour = node; } } public KD3DNode search_parent(KD3DNode parent, double[] x) { for (int k = 0; k < 3; k++) { x_min[k] = x_max[k] = 0; max_boundary[k] = min_boundary[k] = false; // } n_boundary = 0; KD3DNode search_root = parent; while (parent != null && (n_boundary != 3 * 3)) { check_subtree(parent, x); search_root = parent; parent = parent.Parent; } return search_root; } public void uncheck() { for (int n = 0; n < checked_nodes; n++) CheckedNodes[n].checked = false; } public void inorder() { inorder(Root); } private void inorder(KD3DNode root) { if (root != null) { inorder(root.Left); System.out.print("(" + root.x[0] + ", " + root.x[1] + ", " + root.x[2] + ") "); inorder(root.Right); } } public void preorder() { preorder(Root); } private void preorder(KD3DNode root) { if (root != null) { System.out.print("(" + root.x[0] + ", " + root.x[1] + ", " + root.x[2] + ") "); inorder(root.Left); inorder(root.Right); } } public void postorder() { postorder(Root); } private void postorder(KD3DNode root) { if (root != null) { inorder(root.Left); inorder(root.Right); System.out.print("(" + root.x[0] + ", " + root.x[1] + ", " + root.x[2] + ") "); } } public void search(double x, double y, double z) { search(Root, x, y, z); } private void search(KD3DNode root, double x, double y, double z) { if (root != null) { search(root.Left, x, y, z); if (x == root.x[0] && y == root.x[1] && z == root.x[2]) System.out.print("True (" + root.x[0] + ", " + root.x[1] + ", " + root.x[2] + ") "); search(root.Right, x, y, z); } } } public class KD3D_Search { public static void main(String args[]) throws IOException { int numpoints = 5; Scanner sc = new Scanner(System.in); KD3DTree kdt = new KD3DTree(numpoints); double x[] = new double[3]; x[0] = 0.0; x[1] = 0.0; x[2] = 0.0; kdt.add(x); x[0] = 3.3; x[1] = 1.5; x[2] = 4.0; kdt.add(x); x[0] = 4.7; x[1] = 11.1; x[2] = 2.3; kdt.add(x); x[0] = 5.0; x[1] = 12.3; x[2] = 5.7; kdt.add(x); x[0] = 5.1; x[1] = 1.2; x[2] = 4.2; kdt.add(x); System.out.println("Enter the co-ordinates of the point: <x> <y> <z>"); double x1 = sc.nextDouble(); double y1 = sc.nextDouble(); double z1 = sc.nextDouble(); kdt.search(x1, y1, z1); System.out.println("\nInorder of 2D Kd tree: "); kdt.inorder(); System.out.println("\nPreorder of 2D Kd tree: "); kdt.preorder(); System.out.println("\npostorder of 2D Kd tree: "); kdt.postorder(); sc.close(); } }
Output:
$ javac KD3D_Search.java $ java KD3D_Search Enter the co-ordinates of the point: <x> <y> <z> 5.1 1.2 4.2 True (5.1, 1.2, 4.2) Inorder of 2D Kd tree: (0.0, 0.0, 0.0) (5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7) Preorder of 2D Kd tree: (0.0, 0.0, 0.0) (5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7) postorder of 2D Kd tree: (5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7) (0.0, 0.0, 0.0) Enter the co-ordinates of the point: <x> <y> <z> 5.1 5.2 5.3 False Inorder of 2D Kd tree: (0.0, 0.0, 0.0) (5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7) Preorder of 2D Kd tree: (0.0, 0.0, 0.0) (5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7) postorder of 2D Kd tree: (5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7) (0.0, 0.0, 0.0)
Related posts:
The Difference Between Collection.stream().forEach() and Collection.forEach()
Java Program to Convert a Decimal Number to Binary Number using Stacks
Java Program to Implement Solovay Strassen Primality Test Algorithm
Java Program to Implement D-ary-Heap
How to Read HTTP Headers in Spring REST Controllers
Java – Create a File
Guide to the Fork/Join Framework in Java
Java Program to Implement Treap
Comparing getPath(), getAbsolutePath(), and getCanonicalPath() in Java
Java – Random Long, Float, Integer and Double
Guide to the Synchronized Keyword in Java
Add Multiple Items to an Java ArrayList
Phân biệt JVM, JRE, JDK
Quản lý bộ nhớ trong Java với Heap Space vs Stack
Circular Dependencies in Spring
Java Program to Describe the Representation of Graph using Adjacency List
A Guide to Spring Cloud Netflix – Hystrix
Spring Boot - Thymeleaf
Java Program to Generate N Number of Passwords of Length M Each
Tránh lỗi NullPointerException trong Java như thế nào?
Immutable Map Implementations in Java
Java Program to Implement Park-Miller Random Number Generation Algorithm
Convert a Map to an Array, List or Set in Java
Spring – Injecting Collections
Spring REST API + OAuth2 + Angular (using the Spring Security OAuth legacy stack)
Java Program to Construct K-D Tree for 2 Dimensional Data
An Intro to Spring Cloud Contract
Guide to the Java Clock Class
Spring Data Java 8 Support
Java equals() and hashCode() Contracts
Java Program to Implement Doubly Linked List
New Features in Java 15