This is a Java Program to implement 3D KD Tree and Search an element. In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of binary space partitioning trees.
Here is the source code of the Java Program to Find Location of a Point Placed in Three Dimensions Using K-D Trees. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a java program to find the location of point in 3 dimensional KD Tree
import java.io.IOException;
import java.util.Scanner;
class KD3DNode
{
int axis;
double[] x;
int id;
boolean checked;
boolean orientation;
KD3DNode Parent;
KD3DNode Left;
KD3DNode Right;
public KD3DNode(double[] x0, int axis0)
{
x = new double[3];
axis = axis0;
for (int k = 0; k < 3; k++)
x[k] = x0[k];
Left = Right = Parent = null;
checked = false;
id = 0;
}
public KD3DNode FindParent(double[] x0)
{
KD3DNode parent = null;
KD3DNode next = this;
int split;
while (next != null)
{
split = next.axis;
parent = next;
if (x0[split] > next.x[split])
next = next.Right;
else
next = next.Left;
}
return parent;
}
public KD3DNode Insert(double[] p)
{
x = new double[3];
KD3DNode parent = FindParent(p);
if (equal(p, parent.x, 3) == true)
return null;
KD3DNode newNode = new KD3DNode(p,
parent.axis + 1 < 3 ? parent.axis + 1 : 0);
newNode.Parent = parent;
if (p[parent.axis] > parent.x[parent.axis])
{
parent.Right = newNode;
newNode.orientation = true; //
} else
{
parent.Left = newNode;
newNode.orientation = false; //
}
return newNode;
}
boolean equal(double[] x1, double[] x2, int dim)
{
for (int k = 0; k < dim; k++)
{
if (x1[k] != x2[k])
return false;
}
return true;
}
double distance2(double[] x1, double[] x2, int dim)
{
double S = 0;
for (int k = 0; k < dim; k++)
S += (x1[k] - x2[k]) * (x1[k] - x2[k]);
return S;
}
}
class KD3DTree
{
KD3DNode Root;
int TimeStart, TimeFinish;
int CounterFreq;
double d_min;
KD3DNode nearest_neighbour;
int KD_id;
int nList;
KD3DNode CheckedNodes[];
int checked_nodes;
KD3DNode List[];
double x_min[], x_max[];
boolean max_boundary[], min_boundary[];
int n_boundary;
public KD3DTree(int i)
{
Root = null;
KD_id = 1;
nList = 0;
List = new KD3DNode[i];
CheckedNodes = new KD3DNode[i];
max_boundary = new boolean[3];
min_boundary = new boolean[3];
x_min = new double[3];
x_max = new double[3];
}
public boolean add(double[] x)
{
if (nList >= 2000000 - 1)
return false; // can't add more points
if (Root == null)
{
Root = new KD3DNode(x, 0);
Root.id = KD_id++;
List[nList++] = Root;
} else
{
KD3DNode pNode;
if ((pNode = Root.Insert(x)) != null)
{
pNode.id = KD_id++;
List[nList++] = pNode;
}
}
return true;
}
public KD3DNode find_nearest(double[] x)
{
if (Root == null)
return null;
checked_nodes = 0;
KD3DNode parent = Root.FindParent(x);
nearest_neighbour = parent;
d_min = Root.distance2(x, parent.x, 3);
;
if (parent.equal(x, parent.x, 3) == true)
return nearest_neighbour;
search_parent(parent, x);
uncheck();
return nearest_neighbour;
}
public void check_subtree(KD3DNode node, double[] x)
{
if ((node == null) || node.checked)
return;
CheckedNodes[checked_nodes++] = node;
node.checked = true;
set_bounding_cube(node, x);
int dim = node.axis;
double d = node.x[dim] - x[dim];
if (d * d > d_min)
{
if (node.x[dim] > x[dim])
check_subtree(node.Left, x);
else
check_subtree(node.Right, x);
} else
{
check_subtree(node.Left, x);
check_subtree(node.Right, x);
}
}
public void set_bounding_cube(KD3DNode node, double[] x)
{
if (node == null)
return;
int d = 0;
double dx;
for (int k = 0; k < 3; k++)
{
dx = node.x[k] - x[k];
if (dx > 0)
{
dx *= dx;
if (!max_boundary[k])
{
if (dx > x_max[k])
x_max[k] = dx;
if (x_max[k] > d_min)
{
max_boundary[k] = true;
n_boundary++;
}
}
} else
{
dx *= dx;
if (!min_boundary[k])
{
if (dx > x_min[k])
x_min[k] = dx;
if (x_min[k] > d_min)
{
min_boundary[k] = true;
n_boundary++;
}
}
}
d += dx;
if (d > d_min)
return;
}
if (d < d_min)
{
d_min = d;
nearest_neighbour = node;
}
}
public KD3DNode search_parent(KD3DNode parent, double[] x)
{
for (int k = 0; k < 3; k++)
{
x_min[k] = x_max[k] = 0;
max_boundary[k] = min_boundary[k] = false; //
}
n_boundary = 0;
KD3DNode search_root = parent;
while (parent != null && (n_boundary != 3 * 3))
{
check_subtree(parent, x);
search_root = parent;
parent = parent.Parent;
}
return search_root;
}
public void uncheck()
{
for (int n = 0; n < checked_nodes; n++)
CheckedNodes[n].checked = false;
}
public void inorder()
{
inorder(Root);
}
private void inorder(KD3DNode root)
{
if (root != null)
{
inorder(root.Left);
System.out.print("(" + root.x[0] + ", " + root.x[1] + ", "
+ root.x[2] + ") ");
inorder(root.Right);
}
}
public void preorder()
{
preorder(Root);
}
private void preorder(KD3DNode root)
{
if (root != null)
{
System.out.print("(" + root.x[0] + ", " + root.x[1] + ", "
+ root.x[2] + ") ");
inorder(root.Left);
inorder(root.Right);
}
}
public void postorder()
{
postorder(Root);
}
private void postorder(KD3DNode root)
{
if (root != null)
{
inorder(root.Left);
inorder(root.Right);
System.out.print("(" + root.x[0] + ", " + root.x[1] + ", "
+ root.x[2] + ") ");
}
}
public void search(double x, double y, double z)
{
search(Root, x, y, z);
}
private void search(KD3DNode root, double x, double y, double z)
{
if (root != null)
{
search(root.Left, x, y, z);
if (x == root.x[0] && y == root.x[1] && z == root.x[2])
System.out.print("True (" + root.x[0] + ", " + root.x[1] + ", "
+ root.x[2] + ") ");
search(root.Right, x, y, z);
}
}
}
public class KD3D_Search
{
public static void main(String args[]) throws IOException
{
int numpoints = 5;
Scanner sc = new Scanner(System.in);
KD3DTree kdt = new KD3DTree(numpoints);
double x[] = new double[3];
x[0] = 0.0;
x[1] = 0.0;
x[2] = 0.0;
kdt.add(x);
x[0] = 3.3;
x[1] = 1.5;
x[2] = 4.0;
kdt.add(x);
x[0] = 4.7;
x[1] = 11.1;
x[2] = 2.3;
kdt.add(x);
x[0] = 5.0;
x[1] = 12.3;
x[2] = 5.7;
kdt.add(x);
x[0] = 5.1;
x[1] = 1.2;
x[2] = 4.2;
kdt.add(x);
System.out.println("Enter the co-ordinates of the point: <x> <y> <z>");
double x1 = sc.nextDouble();
double y1 = sc.nextDouble();
double z1 = sc.nextDouble();
kdt.search(x1, y1, z1);
System.out.println("\nInorder of 2D Kd tree: ");
kdt.inorder();
System.out.println("\nPreorder of 2D Kd tree: ");
kdt.preorder();
System.out.println("\npostorder of 2D Kd tree: ");
kdt.postorder();
sc.close();
}
}
Output:
$ javac KD3D_Search.java $ java KD3D_Search Enter the co-ordinates of the point: <x> <y> <z> 5.1 1.2 4.2 True (5.1, 1.2, 4.2) Inorder of 2D Kd tree: (0.0, 0.0, 0.0) (5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7) Preorder of 2D Kd tree: (0.0, 0.0, 0.0) (5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7) postorder of 2D Kd tree: (5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7) (0.0, 0.0, 0.0) Enter the co-ordinates of the point: <x> <y> <z> 5.1 5.2 5.3 False Inorder of 2D Kd tree: (0.0, 0.0, 0.0) (5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7) Preorder of 2D Kd tree: (0.0, 0.0, 0.0) (5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7) postorder of 2D Kd tree: (5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7) (0.0, 0.0, 0.0)
Related posts:
Versioning a REST API
Hướng dẫn Java Design Pattern – Adapter
Partition a List in Java
Map to String Conversion in Java
Java Program to Solve a Matching Problem for a Given Specific Case
Configure a Spring Boot Web Application
Registration – Password Strength and Rules
An Introduction to Java.util.Hashtable Class
Java Program to Implement Segment Tree
Sử dụng CyclicBarrier trong Java
Java Program to Implement Pagoda
Send email with JavaMail
Spring Boot Annotations
Ways to Iterate Over a List in Java
Sắp xếp trong Java 8
Giới thiệu về Stream API trong Java 8
Guide to ThreadLocalRandom in Java
Spring Data JPA @Modifying Annotation
Spring Security Form Login
Spring 5 Functional Bean Registration
Giới thiệu SOAP UI và thực hiện test Web Service
Java Program to Implement Sorted Doubly Linked List
Add Multiple Items to an Java ArrayList
Java Program to Remove the Edges in a Given Cyclic Graph such that its Linear Extension can be Found
Java Program to Implement String Matching Using Vectors
Creating Docker Images with Spring Boot
A Guide to Apache Commons Collections CollectionUtils
Java Program to Implement the Binary Counting Method to Generate Subsets of a Set
Map Serialization and Deserialization with Jackson
Java Program to Implement wheel Sieve to Generate Prime Numbers Between Given Range
Period and Duration in Java
A Guide to JPA with Spring