This is a Java Program to implement Skew Heap. A skew heap (or self-adjusting heap) is a heap data structure implemented as a binary tree. Skew heaps are advantageous because of their ability to merge more quickly than binary heaps. In contrast with binary heaps, there are no structural constraints, so there is no guarantee that the height of the tree is logarithmic.
Here is the source code of the Java program to implement Skew Heap. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
/** * Java Program to Implement Skew Heap **/ import java.util.*; /** Class SkewNode **/ class SkewNode { int element; SkewNode left, right; /** Constructor **/ public SkewNode(int val) { this.element = val; this.left = null; this.right = null; } } /** Class SkewHeap **/ class SkewHeap { private SkewNode root; private int size; /** Constructor **/ public SkewHeap() { root = null; size = 0; } /** Check if heap is empty **/ public boolean isEmpty() { return root == null; } /** clear heap **/ public void clear() { root = null; size = 0; } /** Function to get size **/ public int getSize() { return size; } /** Function to insert **/ public void insert(int val) { root = merge(root, new SkewNode(val)); size++ ; } /** Function to remove element **/ public void remove() { if (root == null) throw new NoSuchElementException("Element not found"); root = merge(root.left, root.right); size--; } /** Function merge **/ private SkewNode merge(SkewNode x, SkewNode y) { if (x == null) return y; if (y == null) return x; if (x.element < y.element) { SkewNode temp = x.left; x.left = merge(x.right, y); x.right = temp; return x; } else { SkewNode temp = y.right; y.right = merge(y.left, x); y.left = temp; return y; } } /** Function to display heap **/ public void displayHeap() { System.out.print("\nHeap : "); displayHeap(root); System.out.println("\n"); } private void displayHeap(SkewNode r) { if (r != null) { displayHeap(r.left); System.out.print(r.element +" "); displayHeap(r.right); } } } /** Class SkewHeapTest **/ public class SkewHeapTest { public static void main(String[] args) { Scanner scan = new Scanner(System.in); System.out.println("Skew Heap Test\n\n"); /** Make object of SkewHeap **/ SkewHeap sh = new SkewHeap( ); char ch; /** Perform SkewHeap operations **/ do { System.out.println("\nSkewHeap Operations\n"); System.out.println("1. insert "); System.out.println("2. delete "); System.out.println("3. size"); System.out.println("4. check empty"); System.out.println("5. clear"); int choice = scan.nextInt(); switch (choice) { case 1 : System.out.println("Enter integer element to insert"); sh.insert( scan.nextInt() ); break; case 2 : sh.remove(); break; case 3 : System.out.println("Size = "+ sh.getSize()); break; case 4 : System.out.println("Empty status = "+ sh.isEmpty()); break; case 5 : sh.clear(); System.out.println("Heap Cleared\n"); break; default : System.out.println("Wrong Entry \n "); break; } /** Display heap **/ sh.displayHeap(); System.out.println("\nDo you want to continue (Type y or n) \n"); ch = scan.next().charAt(0); } while (ch == 'Y'|| ch == 'y'); } }
Skew Heap Test SkewHeap Operations 1. insert 2. delete 3. size 4. check empty 5. clear 4 Empty status = true Heap : Do you want to continue (Type y or n) y SkewHeap Operations 1. insert 2. delete 3. size 4. check empty 5. clear 1 Enter integer element to insert 1 Heap : 1 Do you want to continue (Type y or n) y SkewHeap Operations 1. insert 2. delete 3. size 4. check empty 5. clear 1 Enter integer element to insert 5 Heap : 5 1 Do you want to continue (Type y or n) y SkewHeap Operations 1. insert 2. delete 3. size 4. check empty 5. clear 1 Enter integer element to insert 7 Heap : 7 1 5 Do you want to continue (Type y or n) y SkewHeap Operations 1. insert 2. delete 3. size 4. check empty 5. clear 1 Enter integer element to insert 14 Heap : 14 5 1 7 Do you want to continue (Type y or n) y SkewHeap Operations 1. insert 2. delete 3. size 4. check empty 5. clear 1 Enter integer element to insert 70 Heap : 70 7 1 14 5 Do you want to continue (Type y or n) y SkewHeap Operations 1. insert 2. delete 3. size 4. check empty 5. clear 1 Enter integer element to insert 91 Heap : 91 5 14 1 70 7 Do you want to continue (Type y or n) y SkewHeap Operations 1. insert 2. delete 3. size 4. check empty 5. clear 2 Heap : 7 14 70 5 91 Do you want to continue (Type y or n) y SkewHeap Operations 1. insert 2. delete 3. size 4. check empty 5. clear 2 Heap : 91 70 14 7 Do you want to continue (Type y or n) y SkewHeap Operations 1. insert 2. delete 3. size 4. check empty 5. clear 2 Heap : 91 70 14 Do you want to continue (Type y or n) y SkewHeap Operations 1. insert 2. delete 3. size 4. check empty 5. clear 2 Heap : 91 70 Do you want to continue (Type y or n) n
Related posts:
Spring Security Custom AuthenticationFailureHandler
Mix plain text and HTML content in a mail
Java Program to Implement Rope
Java InputStream to String
Exploring the Spring Boot TestRestTemplate
MyBatis with Spring
The DAO with Spring and Hibernate
Spring Data MongoDB – Indexes, Annotations and Converters
String Processing with Apache Commons Lang 3
Java Program to Perform LU Decomposition of any Matrix
Java Program to Implement Queue
Guide to ThreadLocalRandom in Java
Spring Security OAuth2 – Simple Token Revocation
Spring Cloud Series – The Gateway Pattern
Java Program to Compute the Volume of a Tetrahedron Using Determinants
Summing Numbers with Java Streams
A Guide to the ViewResolver in Spring MVC
Sorting in Java
Xử lý ngoại lệ trong Java (Exception Handling)
Java Program to Implement Hash Tables Chaining with List Heads
Java Program to Implement Hash Tables with Linear Probing
Using Spring @ResponseStatus to Set HTTP Status Code
Comparing Strings in Java
The Dining Philosophers Problem in Java
Java toString() Method
Registration with Spring Security – Password Encoding
Java Program to Sort an Array of 10 Elements Using Heap Sort Algorithm
New Features in Java 13
Các kiểu dữ liệu trong java
Simple Single Sign-On with Spring Security OAuth2
Java Program to Implement LinkedBlockingQueue API
Java Program to Find a Good Feedback Edge Set in a Graph