This is a Java Program to Implement Meldable Heap. A randomized meldable heap (also Meldable Heap or Randomized Meldable Priority Queue) is a priority queue based data structure in which the underlying structure is also a heap-ordered binary tree. However, there are no restrictions on the shape of the underlying binary tree.
Here is the source code of the Java Program to Implement Meldable Heap. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
/** ** Java Program to Implement Meldable Heap **/ import java.util.Scanner; import java.util.Random; /** Class Node **/ class Node { Node left, right, parent; int x; public Node(Node parent, Node left, Node right, int x) { this.parent = parent; this.left = left; this.right = right; this.x = x; } } /** Class MedlableHeap **/ class MeldableHeap { private Random rand; private int n; private Node root; public MeldableHeap() { root = null; rand = new Random(); n = 0; } /** Check if heap is empty **/ public boolean isEmpty() { return root == null; } /** clear heap **/ public void makeEmpty() { root = null; rand = new Random(); n = 0; } /** function to get size **/ public int getSize() { return n; } /** function to insert an element **/ public void add(int x) { Node u = new Node(null, null, null, x); root = meld(u, root); root.parent = null; n++; } /** function to remove an element **/ public int remove() { int x = root.x; root = meld(root.left, root.right); if (root != null) root.parent = null; n--; return x; } /** function to merge two nodes **/ public Node meld(Node q1, Node q2) { if (q1 == null) return q2; if (q2 == null) return q1; if (q2.x < q1.x) return meld(q2, q1); if (rand.nextBoolean()) { q1.left = meld(q1.left, q2); q1.left.parent = q1; } else { q1.right = meld(q1.right, q2); q1.right.parent = q1; } return q1; } /** function to print heap **/ public void displayHeap() { System.out.print("\nMeldable Heap : "); if (root == null) { System.out.print("Empty\n"); return; } Node prev, w = root; while (w.left != null) w = w.left; while (w != null) { System.out.print(w.x +" "); prev = w; w = nextNode(w); } System.out.println(); } /** function to get next node in heap **/ private Node nextNode(Node w) { if (w.right != null) { w = w.right; while (w.left != null) w = w.left; } else { while (w.parent != null && w.parent.left != w) w = w.parent; w = w.parent; } return w; } } /** Class MeldableHeapTest **/ public class MeldableHeapTest { public static void main(String[] args) { Scanner scan = new Scanner(System.in); System.out.println("Meldable Heap Test\n\n"); /* Make object of MeldableHeap */ MeldableHeap mh = new MeldableHeap(); char ch; /* Perform Meldable Heap operations */ do { System.out.println("\nMeldable Heap Operations\n"); System.out.println("1. add"); System.out.println("2. remove"); System.out.println("3. size"); System.out.println("4. check empty"); System.out.println("5. clear"); int choice = scan.nextInt(); switch (choice) { case 1 : System.out.println("Enter integer element to insert"); mh.add( scan.nextInt() ); break; case 2 : System.out.println("Removed Element : "+ mh.remove() ); break; case 3 : System.out.println("Size = "+ mh.getSize()); break; case 4 : System.out.println("Empty status = "+ mh.isEmpty()); break; case 5 : mh.makeEmpty(); System.out.println("Heap Cleared\n"); break; default : System.out.println("Wrong Entry \n "); break; } /* Display heap */ mh.displayHeap(); System.out.println("\nDo you want to continue (Type y or n) \n"); ch = scan.next().charAt(0); } while (ch == 'Y'|| ch == 'y'); } }
Meldable Heap Test Meldable Heap Operations 1. add 2. remove 3. size 4. check empty 5. clear 4 Empty status = true Meldable Heap : Empty Do you want to continue (Type y or n) y Meldable Heap Operations 1. add 2. remove 3. size 4. check empty 5. clear 1 Enter integer element to insert 24 Meldable Heap : 24 Do you want to continue (Type y or n) y Meldable Heap Operations 1. add 2. remove 3. size 4. check empty 5. clear 1 Enter integer element to insert 6 Meldable Heap : 24 6 Do you want to continue (Type y or n) y Meldable Heap Operations 1. add 2. remove 3. size 4. check empty 5. clear 1 Enter integer element to insert 28 Meldable Heap : 28 24 6 Do you want to continue (Type y or n) y Meldable Heap Operations 1. add 2. remove 3. size 4. check empty 5. clear 1 Enter integer element to insert 94 Meldable Heap : 28 24 6 94 Do you want to continue (Type y or n) y Meldable Heap Operations 1. add 2. remove 3. size 4. check empty 5. clear 1 Enter integer element to insert 19 Meldable Heap : 28 24 6 19 94 Do you want to continue (Type y or n) y Meldable Heap Operations 1. add 2. remove 3. size 4. check empty 5. clear 1 Enter integer element to insert 5 Meldable Heap : 28 24 6 19 94 5 Do you want to continue (Type y or n) y Meldable Heap Operations 1. add 2. remove 3. size 4. check empty 5. clear 1 Enter integer element to insert 63 Meldable Heap : 28 24 6 19 94 5 63 Do you want to continue (Type y or n) y Meldable Heap Operations 1. add 2. remove 3. size 4. check empty 5. clear 3 Size = 7 Meldable Heap : 28 24 6 19 94 5 63 Do you want to continue (Type y or n) y Meldable Heap Operations 1. add 2. remove 3. size 4. check empty 5. clear 2 Removed Element : 5 Meldable Heap : 28 63 24 6 19 94 Do you want to continue (Type y or n) y Meldable Heap Operations 1. add 2. remove 3. size 4. check empty 5. clear 2 Removed Element : 6 Meldable Heap : 28 63 24 19 94 Do you want to continue (Type y or n) y Meldable Heap Operations 1. add 2. remove 3. size 4. check empty 5. clear 2 Removed Element : 19 Meldable Heap : 28 63 24 94 Do you want to continue (Type y or n) y Meldable Heap Operations 1. add 2. remove 3. size 4. check empty 5. clear 2 Removed Element : 24 Meldable Heap : 94 28 63 Do you want to continue (Type y or n) y Meldable Heap Operations 1. add 2. remove 3. size 4. check empty 5. clear 5 Heap Cleared Meldable Heap : Empty Do you want to continue (Type y or n) y Meldable Heap Operations 1. add 2. remove 3. size 4. check empty 5. clear 4 Empty status = true Meldable Heap : Empty Do you want to continue (Type y or n) n
Related posts:
Hướng dẫn Java Design Pattern – Strategy
Merging Two Maps with Java 8
Java Program to Check whether Directed Graph is Connected using DFS
Spring Boot - Exception Handling
Using Custom Banners in Spring Boot
Java Program to Implement Park-Miller Random Number Generation Algorithm
DynamoDB in a Spring Boot Application Using Spring Data
Composition, Aggregation, and Association in Java
RegEx for matching Date Pattern in Java
Getting Started with Custom Deserialization in Jackson
Java Program to Implement Gauss Seidel Method
Cơ chế Upcasting và Downcasting trong java
REST Web service: Tạo ứng dụng Java RESTful Client với Jersey Client 2.x
Java Program to Implement Binomial Tree
Deploy a Spring Boot App to Azure
Hướng dẫn Java Design Pattern – Facade
Java Program to Implement Control Table
Java Program to Find Basis and Dimension of a Matrix
Java Stream Filter with Lambda Expression
Posting with HttpClient
Converting a Stack Trace to a String in Java
Simultaneous Spring WebClient Calls
REST Pagination in Spring
Introduction to Spring Security Expressions
Java Program to implement Dynamic Array
Java Program to Implement the String Search Algorithm for Short Text Sizes
Guide to Java OutputStream
Java Program to Print the Kind of Rotation the AVL Tree is Undergoing
Tạo ứng dụng Java RESTful Client không sử dụng 3rd party libraries
Spring Boot - Enabling HTTPS
Java Program to Find Nearest Neighbor Using Linear Search
Spring Boot - Introduction