This is a Java Program to Implement Meldable Heap. A randomized meldable heap (also Meldable Heap or Randomized Meldable Priority Queue) is a priority queue based data structure in which the underlying structure is also a heap-ordered binary tree. However, there are no restrictions on the shape of the underlying binary tree.
Here is the source code of the Java Program to Implement Meldable Heap. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
/** ** Java Program to Implement Meldable Heap **/ import java.util.Scanner; import java.util.Random; /** Class Node **/ class Node { Node left, right, parent; int x; public Node(Node parent, Node left, Node right, int x) { this.parent = parent; this.left = left; this.right = right; this.x = x; } } /** Class MedlableHeap **/ class MeldableHeap { private Random rand; private int n; private Node root; public MeldableHeap() { root = null; rand = new Random(); n = 0; } /** Check if heap is empty **/ public boolean isEmpty() { return root == null; } /** clear heap **/ public void makeEmpty() { root = null; rand = new Random(); n = 0; } /** function to get size **/ public int getSize() { return n; } /** function to insert an element **/ public void add(int x) { Node u = new Node(null, null, null, x); root = meld(u, root); root.parent = null; n++; } /** function to remove an element **/ public int remove() { int x = root.x; root = meld(root.left, root.right); if (root != null) root.parent = null; n--; return x; } /** function to merge two nodes **/ public Node meld(Node q1, Node q2) { if (q1 == null) return q2; if (q2 == null) return q1; if (q2.x < q1.x) return meld(q2, q1); if (rand.nextBoolean()) { q1.left = meld(q1.left, q2); q1.left.parent = q1; } else { q1.right = meld(q1.right, q2); q1.right.parent = q1; } return q1; } /** function to print heap **/ public void displayHeap() { System.out.print("\nMeldable Heap : "); if (root == null) { System.out.print("Empty\n"); return; } Node prev, w = root; while (w.left != null) w = w.left; while (w != null) { System.out.print(w.x +" "); prev = w; w = nextNode(w); } System.out.println(); } /** function to get next node in heap **/ private Node nextNode(Node w) { if (w.right != null) { w = w.right; while (w.left != null) w = w.left; } else { while (w.parent != null && w.parent.left != w) w = w.parent; w = w.parent; } return w; } } /** Class MeldableHeapTest **/ public class MeldableHeapTest { public static void main(String[] args) { Scanner scan = new Scanner(System.in); System.out.println("Meldable Heap Test\n\n"); /* Make object of MeldableHeap */ MeldableHeap mh = new MeldableHeap(); char ch; /* Perform Meldable Heap operations */ do { System.out.println("\nMeldable Heap Operations\n"); System.out.println("1. add"); System.out.println("2. remove"); System.out.println("3. size"); System.out.println("4. check empty"); System.out.println("5. clear"); int choice = scan.nextInt(); switch (choice) { case 1 : System.out.println("Enter integer element to insert"); mh.add( scan.nextInt() ); break; case 2 : System.out.println("Removed Element : "+ mh.remove() ); break; case 3 : System.out.println("Size = "+ mh.getSize()); break; case 4 : System.out.println("Empty status = "+ mh.isEmpty()); break; case 5 : mh.makeEmpty(); System.out.println("Heap Cleared\n"); break; default : System.out.println("Wrong Entry \n "); break; } /* Display heap */ mh.displayHeap(); System.out.println("\nDo you want to continue (Type y or n) \n"); ch = scan.next().charAt(0); } while (ch == 'Y'|| ch == 'y'); } }
Meldable Heap Test Meldable Heap Operations 1. add 2. remove 3. size 4. check empty 5. clear 4 Empty status = true Meldable Heap : Empty Do you want to continue (Type y or n) y Meldable Heap Operations 1. add 2. remove 3. size 4. check empty 5. clear 1 Enter integer element to insert 24 Meldable Heap : 24 Do you want to continue (Type y or n) y Meldable Heap Operations 1. add 2. remove 3. size 4. check empty 5. clear 1 Enter integer element to insert 6 Meldable Heap : 24 6 Do you want to continue (Type y or n) y Meldable Heap Operations 1. add 2. remove 3. size 4. check empty 5. clear 1 Enter integer element to insert 28 Meldable Heap : 28 24 6 Do you want to continue (Type y or n) y Meldable Heap Operations 1. add 2. remove 3. size 4. check empty 5. clear 1 Enter integer element to insert 94 Meldable Heap : 28 24 6 94 Do you want to continue (Type y or n) y Meldable Heap Operations 1. add 2. remove 3. size 4. check empty 5. clear 1 Enter integer element to insert 19 Meldable Heap : 28 24 6 19 94 Do you want to continue (Type y or n) y Meldable Heap Operations 1. add 2. remove 3. size 4. check empty 5. clear 1 Enter integer element to insert 5 Meldable Heap : 28 24 6 19 94 5 Do you want to continue (Type y or n) y Meldable Heap Operations 1. add 2. remove 3. size 4. check empty 5. clear 1 Enter integer element to insert 63 Meldable Heap : 28 24 6 19 94 5 63 Do you want to continue (Type y or n) y Meldable Heap Operations 1. add 2. remove 3. size 4. check empty 5. clear 3 Size = 7 Meldable Heap : 28 24 6 19 94 5 63 Do you want to continue (Type y or n) y Meldable Heap Operations 1. add 2. remove 3. size 4. check empty 5. clear 2 Removed Element : 5 Meldable Heap : 28 63 24 6 19 94 Do you want to continue (Type y or n) y Meldable Heap Operations 1. add 2. remove 3. size 4. check empty 5. clear 2 Removed Element : 6 Meldable Heap : 28 63 24 19 94 Do you want to continue (Type y or n) y Meldable Heap Operations 1. add 2. remove 3. size 4. check empty 5. clear 2 Removed Element : 19 Meldable Heap : 28 63 24 94 Do you want to continue (Type y or n) y Meldable Heap Operations 1. add 2. remove 3. size 4. check empty 5. clear 2 Removed Element : 24 Meldable Heap : 94 28 63 Do you want to continue (Type y or n) y Meldable Heap Operations 1. add 2. remove 3. size 4. check empty 5. clear 5 Heap Cleared Meldable Heap : Empty Do you want to continue (Type y or n) y Meldable Heap Operations 1. add 2. remove 3. size 4. check empty 5. clear 4 Empty status = true Meldable Heap : Empty Do you want to continue (Type y or n) n
Related posts:
Java Program to Implement Traveling Salesman Problem using Nearest neighbour Algorithm
Creating a Custom Starter with Spring Boot
Runnable vs. Callable in Java
@Lookup Annotation in Spring
Java Program to Implement Selection Sort
Java Program to Implement Extended Euclid Algorithm
Overview of the java.util.concurrent
Java Program to Implement Gale Shapley Algorithm
ArrayList trong java
Ignore Null Fields with Jackson
Java – Rename or Move a File
Spring WebClient vs. RestTemplate
Circular Dependencies in Spring
Functional Interfaces in Java 8
Hướng dẫn Java Design Pattern – Abstract Factory
A Guide to ConcurrentMap
Performance Difference Between save() and saveAll() in Spring Data
Generic Constructors in Java
Converting a List to String in Java
Java Program to Implement Binary Tree
Java Program to Implement Weight Balanced Tree
Java Program to Check Whether a Given Point is in a Given Polygon
Hướng dẫn Java Design Pattern – Command
Handling URL Encoded Form Data in Spring REST
Java Program to Represent Linear Equations in Matrix Form
Java Program to Implement Double Order Traversal of a Binary Tree
Calling Stored Procedures from Spring Data JPA Repositories
Spring Data JPA Delete and Relationships
Java Program to Implement ArrayList API
Lớp Properties trong java
Multipart Upload with HttpClient 4
A Guide to the Java LinkedList