This is a Java Program to implement Weight Balanced Tree. A weight-balanced binary tree is a binary tree which is balanced based on knowledge of the probabilities of searching for each individual node. Within each subtree, the node with the highest weight appears at the root. This can result in more efficient searching performance.
Construction of such a tree is similar to that of a Treap, but node weights are chosen randomly in the latter.
Here is the source code of the Java program to implement Weight Balanced Tree. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
/** * Java Program to Implement Weight Balanced Tree **/ import java.util.Scanner; import java.util.Random; /** Class WBTNode **/ class WBTNode { WBTNode left, right; int weight, element; /** Constructor **/ public WBTNode(int ele, int wt) { this(ele, wt, null, null); } /** Constructor **/ public WBTNode(int ele, int wt, WBTNode left, WBTNode right) { this.element = ele; this.left = left; this.right = right; this.weight = wt; } } /** Class WeightBalancedTree **/ class WeightBalancedTree { private WBTNode root; private static WBTNode nil = new WBTNode(0, Integer.MAX_VALUE); /** Constructor **/ public WeightBalancedTree() { root = nil; } /** Function to check if tree is empty **/ public boolean isEmpty() { return root == nil; } /** clear tree **/ public void clear() { root = nil; } /** Functions to insert data **/ public void insert(int X, int WT) { root = insert(X, WT, root); } private WBTNode insert(int X, int WT, WBTNode T) { if (T == nil) return new WBTNode(X, WT, nil, nil); else if (X < T.element) { T.left = insert(X, WT, T.left); if (T.left.weight < T.weight) { WBTNode L = T.left; T.left = L.right; L.right = T; return L; } } else if (X > T.element) { T.right = insert(X, WT, T.right); if (T.right.weight < T.weight) { WBTNode R = T.right; T.right = R.left; R.left = T; return R; } } return T; } /** Functions to count number of nodes **/ public int countNodes() { return countNodes(root); } private int countNodes(WBTNode r) { if (r == nil) return 0; else { int l = 1; l += countNodes(r.left); l += countNodes(r.right); return l; } } /** Functions to search for an element **/ public boolean search(int val) { return search(root, val); } private boolean search(WBTNode r, int val) { boolean found = false; while ((r != nil) && !found) { int rval = r.element; if (val < rval) r = r.left; else if (val > rval) r = r.right; else { found = true; break; } found = search(r, val); } return found; } /** Function for inorder traversal **/ public void inorder() { inorder(root); } private void inorder(WBTNode r) { if (r != nil) { inorder(r.left); System.out.print(r.element +" "); inorder(r.right); } } /** Function for preorder traversal **/ public void preorder() { preorder(root); } private void preorder(WBTNode r) { if (r != nil) { System.out.print(r.element +" "); preorder(r.left); preorder(r.right); } } /** Function for postorder traversal **/ public void postorder() { postorder(root); } private void postorder(WBTNode r) { if (r != nil) { postorder(r.left); postorder(r.right); System.out.print(r.element +" "); } } } /** Class WeightBalancedTreeTest **/ public class WeightBalancedTreeTest { public static void main(String[] args) { Scanner scan = new Scanner(System.in); /** Creating object of WeightBalancedTree**/ WeightBalancedTree wbt = new WeightBalancedTree(); System.out.println("Weight Balanced TreeTest\n"); char ch; /** Perform tree operations **/ do { System.out.println("\nWeight Balanced TreeOperations\n"); System.out.println("1. insert "); System.out.println("2. search"); System.out.println("3. count nodes"); System.out.println("4. check empty"); System.out.println("5. clear"); int choice = scan.nextInt(); switch (choice) { case 1 : System.out.println("Enter integer element to insert and weight of the element"); wbt.insert( scan.nextInt(), scan.nextInt() ); break; case 2 : System.out.println("Enter integer element to search"); System.out.println("Search result : "+ wbt.search( scan.nextInt() )); break; case 3 : System.out.println("Nodes = "+ wbt.countNodes()); break; case 4 : System.out.println("Empty status = "+ wbt.isEmpty()); break; case 5 : System.out.println("\nWeightBalancedTreeCleared"); wbt.clear(); break; default : System.out.println("Wrong Entry \n "); break; } /** Display tree **/ System.out.print("\nPost order : "); wbt.postorder(); System.out.print("\nPre order : "); wbt.preorder(); System.out.print("\nIn order : "); wbt.inorder(); System.out.println("\nDo you want to continue (Type y or n) \n"); ch = scan.next().charAt(0); } while (ch == 'Y'|| ch == 'y'); } }
Weight Balanced TreeTest Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert and weight of the element 24 28 Post order : 24 Pre order : 24 In order : 24 Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert and weight of the element 5 6 Post order : 24 5 Pre order : 5 24 In order : 5 24 Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert and weight of the element 63 94 Post order : 63 24 5 Pre order : 5 24 63 In order : 5 24 63 Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert and weight of the element 14 6 Post order : 63 24 14 5 Pre order : 5 14 24 63 In order : 5 14 24 63 Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert and weight of the element 1 17 Post order : 1 63 24 14 5 Pre order : 5 1 14 24 63 In order : 1 5 14 24 63 Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert and weight of the element 70 91 Post order : 1 63 70 24 14 5 Pre order : 5 1 14 24 70 63 In order : 1 5 14 24 63 70 Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 2 Enter integer element to search 24 Search result : true Post order : 1 63 70 24 14 5 Pre order : 5 1 14 24 70 63 In order : 1 5 14 24 63 70 Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 3 Nodes = 6 Post order : 1 63 70 24 14 5 Pre order : 5 1 14 24 70 63 In order : 1 5 14 24 63 70 Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 5 WeightBalancedTreeCleared Post order : Pre order : In order : Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 4 Empty status = true Post order : Pre order : In order : Do you want to continue (Type y or n) n
Related posts:
Java Program to implement Circular Buffer
Java Program to Find the Minimum Element of a Rotated Sorted Array using Binary Search approach
Hướng dẫn sử dụng Java Generics
Java Program to Implement Horner Algorithm
Converting String to Stream of chars
Spring WebClient and OAuth2 Support
Creating a Web Application with Spring 5
Java Program to Implement the Checksum Method for Small String Messages and Detect
The XOR Operator in Java
Giới thiệu JDBC Connection Pool
Introduction to PCollections
Java Program to Implement Kosaraju Algorithm
Java Program to Implement Binary Search Tree
Java Program to Implement Quick sort
Guide to Dynamic Tests in Junit 5
A Guide to the Java ExecutorService
Giới thiệu Swagger – Công cụ document cho RESTfull APIs
Create a Custom Auto-Configuration with Spring Boot
Java Program to implement Array Deque
A Guide to Java SynchronousQueue
Adding a Newline Character to a String in Java
Java 8 – Powerful Comparison with Lambdas
Java Program to Find Basis and Dimension of a Matrix
HashMap trong Java hoạt động như thế nào?
Spring Boot - Eureka Server
A Guide to TreeSet in Java
Java – Reader to String
Spring Security with Maven
Vector trong Java
Java Program to Implement Rope
Java Program to Generate a Graph for a Given Fixed Degree Sequence
Giới thiệu Google Guice – Binding