This is a Java Program to implement Weight Balanced Tree. A weight-balanced binary tree is a binary tree which is balanced based on knowledge of the probabilities of searching for each individual node. Within each subtree, the node with the highest weight appears at the root. This can result in more efficient searching performance.
Construction of such a tree is similar to that of a Treap, but node weights are chosen randomly in the latter.
Here is the source code of the Java program to implement Weight Balanced Tree. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
/** * Java Program to Implement Weight Balanced Tree **/ import java.util.Scanner; import java.util.Random; /** Class WBTNode **/ class WBTNode { WBTNode left, right; int weight, element; /** Constructor **/ public WBTNode(int ele, int wt) { this(ele, wt, null, null); } /** Constructor **/ public WBTNode(int ele, int wt, WBTNode left, WBTNode right) { this.element = ele; this.left = left; this.right = right; this.weight = wt; } } /** Class WeightBalancedTree **/ class WeightBalancedTree { private WBTNode root; private static WBTNode nil = new WBTNode(0, Integer.MAX_VALUE); /** Constructor **/ public WeightBalancedTree() { root = nil; } /** Function to check if tree is empty **/ public boolean isEmpty() { return root == nil; } /** clear tree **/ public void clear() { root = nil; } /** Functions to insert data **/ public void insert(int X, int WT) { root = insert(X, WT, root); } private WBTNode insert(int X, int WT, WBTNode T) { if (T == nil) return new WBTNode(X, WT, nil, nil); else if (X < T.element) { T.left = insert(X, WT, T.left); if (T.left.weight < T.weight) { WBTNode L = T.left; T.left = L.right; L.right = T; return L; } } else if (X > T.element) { T.right = insert(X, WT, T.right); if (T.right.weight < T.weight) { WBTNode R = T.right; T.right = R.left; R.left = T; return R; } } return T; } /** Functions to count number of nodes **/ public int countNodes() { return countNodes(root); } private int countNodes(WBTNode r) { if (r == nil) return 0; else { int l = 1; l += countNodes(r.left); l += countNodes(r.right); return l; } } /** Functions to search for an element **/ public boolean search(int val) { return search(root, val); } private boolean search(WBTNode r, int val) { boolean found = false; while ((r != nil) && !found) { int rval = r.element; if (val < rval) r = r.left; else if (val > rval) r = r.right; else { found = true; break; } found = search(r, val); } return found; } /** Function for inorder traversal **/ public void inorder() { inorder(root); } private void inorder(WBTNode r) { if (r != nil) { inorder(r.left); System.out.print(r.element +" "); inorder(r.right); } } /** Function for preorder traversal **/ public void preorder() { preorder(root); } private void preorder(WBTNode r) { if (r != nil) { System.out.print(r.element +" "); preorder(r.left); preorder(r.right); } } /** Function for postorder traversal **/ public void postorder() { postorder(root); } private void postorder(WBTNode r) { if (r != nil) { postorder(r.left); postorder(r.right); System.out.print(r.element +" "); } } } /** Class WeightBalancedTreeTest **/ public class WeightBalancedTreeTest { public static void main(String[] args) { Scanner scan = new Scanner(System.in); /** Creating object of WeightBalancedTree**/ WeightBalancedTree wbt = new WeightBalancedTree(); System.out.println("Weight Balanced TreeTest\n"); char ch; /** Perform tree operations **/ do { System.out.println("\nWeight Balanced TreeOperations\n"); System.out.println("1. insert "); System.out.println("2. search"); System.out.println("3. count nodes"); System.out.println("4. check empty"); System.out.println("5. clear"); int choice = scan.nextInt(); switch (choice) { case 1 : System.out.println("Enter integer element to insert and weight of the element"); wbt.insert( scan.nextInt(), scan.nextInt() ); break; case 2 : System.out.println("Enter integer element to search"); System.out.println("Search result : "+ wbt.search( scan.nextInt() )); break; case 3 : System.out.println("Nodes = "+ wbt.countNodes()); break; case 4 : System.out.println("Empty status = "+ wbt.isEmpty()); break; case 5 : System.out.println("\nWeightBalancedTreeCleared"); wbt.clear(); break; default : System.out.println("Wrong Entry \n "); break; } /** Display tree **/ System.out.print("\nPost order : "); wbt.postorder(); System.out.print("\nPre order : "); wbt.preorder(); System.out.print("\nIn order : "); wbt.inorder(); System.out.println("\nDo you want to continue (Type y or n) \n"); ch = scan.next().charAt(0); } while (ch == 'Y'|| ch == 'y'); } }
Weight Balanced TreeTest Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert and weight of the element 24 28 Post order : 24 Pre order : 24 In order : 24 Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert and weight of the element 5 6 Post order : 24 5 Pre order : 5 24 In order : 5 24 Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert and weight of the element 63 94 Post order : 63 24 5 Pre order : 5 24 63 In order : 5 24 63 Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert and weight of the element 14 6 Post order : 63 24 14 5 Pre order : 5 14 24 63 In order : 5 14 24 63 Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert and weight of the element 1 17 Post order : 1 63 24 14 5 Pre order : 5 1 14 24 63 In order : 1 5 14 24 63 Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert and weight of the element 70 91 Post order : 1 63 70 24 14 5 Pre order : 5 1 14 24 70 63 In order : 1 5 14 24 63 70 Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 2 Enter integer element to search 24 Search result : true Post order : 1 63 70 24 14 5 Pre order : 5 1 14 24 70 63 In order : 1 5 14 24 63 70 Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 3 Nodes = 6 Post order : 1 63 70 24 14 5 Pre order : 5 1 14 24 70 63 In order : 1 5 14 24 63 70 Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 5 WeightBalancedTreeCleared Post order : Pre order : In order : Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 4 Empty status = true Post order : Pre order : In order : Do you want to continue (Type y or n) n
Related posts:
Lập trình đa luồng với CompletableFuture trong Java 8
Using Java Assertions
REST Web service: HTTP Status Code và xử lý ngoại lệ RESTful web service với Jersey 2.x
Java Program to Implement the linear congruential generator for Pseudo Random Number Generation
Java program to Implement Tree Set
4 tính chất của lập trình hướng đối tượng trong Java
Spring Boot - CORS Support
Hướng dẫn sử dụng luồng vào ra nhị phân trong Java
Java Program to Implement the Hungarian Algorithm for Bipartite Matching
Java Program to Perform Encoding of a Message Using Matrix Multiplication
An Introduction to Java.util.Hashtable Class
Spring Security OAuth2 – Simple Token Revocation
Java – Reader to String
Java Program to subtract two large numbers using Linked Lists
Map Interface trong java
Loại bỏ các phần tử trùng trong một ArrayList như thế nào trong Java 8?
Java Program to Implement Gale Shapley Algorithm
Filtering a Stream of Optionals in Java
Introduction to Java Serialization
Spring Cloud Connectors and Heroku
Java Program to Implement Adjacency List
Spring MVC + Thymeleaf 3.0: New Features
Java Program to Use Above Below Primitive to Test Whether Two Lines Intersect
Spring Boot - Database Handling
Java Program to Perform integer Partition for a Specific Case
The Difference Between map() and flatMap()
Format ZonedDateTime to String
Giới thiệu HATEOAS
Spring REST API + OAuth2 + Angular (using the Spring Security OAuth legacy stack)
Java Program to Implement Max-Flow Min-Cut Theorem
Introduction to Using Thymeleaf in Spring
Java Program to Implement Gift Wrapping Algorithm in Two Dimensions