Rock Is Push

You are at the top left cell (1,1) of an n×m labyrinth. Your goal is to get to the bottom right cell (n,m). You can only move right or down, one cell per step. Moving right from a cell (x,y) takes you to the cell (x,y+1), while moving down takes you to the cell (x+1,y).

Some cells of the labyrinth contain rocks. When you move to a cell with rock, the rock is pushed to the next cell in the direction you’re moving. If the next cell contains a rock, it gets pushed further, and so on.

The labyrinth is surrounded by impenetrable walls, thus any move that would put you or any rock outside of the labyrinth is illegal.

Count the number of different legal paths you can take from the start to the goal modulo 109+7. Two paths are considered different if there is at least one cell that is visited in one path, but not visited in the other.Input

The first line contains two integers n,m — dimensions of the labyrinth (1n,m2000).

Next n lines describe the labyrinth. Each of these lines contains m characters. The j-th character of the i-th of these lines is equal to “R” if the cell (i,j) contains a rock, or “.” if the cell (i,j) is empty.

It is guaranteed that the starting cell (1,1) is empty.Output

Print a single integer — the number of different legal paths from (1,1) to (n,m) modulo 109+7.

Examples input

1 1
.

output

1

input

2 3
...
..R

output

0

input

4 4
...R
.RR.
.RR.
R...

output

4

Note

In the first sample case we can’t (and don’t have to) move, hence the only path consists of a single cell (1,1).

In the second sample case the goal is blocked and is unreachable.

Solution:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
#include <bits/stdc++.h>
 
using namespace std;
 
template <typename A, typename B>
string to_string(pair<A, B> p);
 
template <typename A, typename B, typename C>
string to_string(tuple<A, B, C> p);
 
template <typename A, typename B, typename C, typename D>
string to_string(tuple<A, B, C, D> p);
 
string to_string(const string& s) {
return '"' + s + '"';
}
 
string to_string(const char* s) {
return to_string((string) s);
}
 
string to_string(bool b) {
return (b ? "true" : "false");
}
 
string to_string(vector<bool> v) {
bool first = true;
string res = "{";
for (int i = 0; i < static_cast<int>(v.size()); i++) {
if (!first) {
res += ", ";
}
first = false;
res += to_string(v[i]);
}
res += "}";
return res;
}
 
template <size_t N>
string to_string(bitset<N> v) {
string res = "";
for (size_t i = 0; i < N; i++) {
    res += static_cast<char>('0' + v[i]);
}
return res;
}
 
template <typename A>
string to_string(A v) {
bool first = true;
string res = "{";
for (const auto &x : v) {
if (!first) {
res += ", ";
}
first = false;
res += to_string(x);
}
res += "}";
return res;
}
 
template <typename A, typename B>
string to_string(pair<A, B> p) {
return "(" + to_string(p.first) + ", " + to_string(p.second) + ")";
}
 
template <typename A, typename B, typename C>
string to_string(tuple<A, B, C> p) {
return "(" + to_string(get<0>(p)) + ", " + to_string(get<1>(p)) + ", " + to_string(get<2>(p)) + ")";
}
 
template <typename A, typename B, typename C, typename D>
string to_string(tuple<A, B, C, D> p) {
return "(" + to_string(get<0>(p)) + ", " + to_string(get<1>(p)) + ", " + to_string(get<2>(p)) + ", " + to_string(get<3>(p)) + ")";
}
 
void debug_out() { cerr << endl; }
 
template <typename Head, typename... Tail>
void debug_out(Head H, Tail... T) {
cerr << " " << to_string(H);
  debug_out(T...);
}
 
#ifdef LOCAL
#define debug(...) cerr << "[" << #__VA_ARGS__ << "]:", debug_out(__VA_ARGS__)
#else
#define debug(...) 42
#endif
 
template <typename T>
T inverse(T a, T m) {
T u = 0, v = 1;
while (a != 0) {
T t = m / a;
m -= t * a; swap(a, m);
u -= t * v; swap(u, v);
}
assert(m == 1);
return u;
}
 
template <typename T>
class Modular {
public:
using Type = typename decay<decltype(T::value)>::type;
 
constexpr Modular() : value() {}
template <typename U>
Modular(const U& x) {
value = normalize(x);
}
 
template <typename U>
static Type normalize(const U& x) {
Type v;
if (-mod() <= x && x < mod()) v = static_cast<Type>(x);
else v = static_cast<Type>(x % mod());
if (v < 0) v += mod();
    return v;
  }
 
  const Type& operator()() const { return value; }
  template <typename U>
explicit operator U() const { return static_cast<U>(value); }
constexpr static Type mod() { return T::value; }
 
Modular& operator+=(const Modular& other) { if ((value += other.value) >= mod()) value -= mod(); return *this; }
Modular& operator-=(const Modular& other) { if ((value -= other.value) < 0) value += mod(); return *this; }
  template <typename U> Modular& operator+=(const U& other) { return *this += Modular(other); }
template <typename U> Modular& operator-=(const U& other) { return *this -= Modular(other); }
Modular& operator++() { return *this += 1; }
Modular& operator--() { return *this -= 1; }
Modular operator++(int) { Modular result(*this); *this += 1; return result; }
Modular operator--(int) { Modular result(*this); *this -= 1; return result; }
Modular operator-() const { return Modular(-value); }
 
template <typename U = T>
typename enable_if<is_same<typename Modular<U>::Type, int>::value, Modular>::type& operator*=(const Modular& rhs) {
#ifdef _WIN32
uint64_t x = static_cast<int64_t>(value) * static_cast<int64_t>(rhs.value);
uint32_t xh = static_cast<uint32_t>(x >> 32), xl = static_cast<uint32_t>(x), d, m;
asm(
"divl %4; \n\t"
: "=a" (d), "=d" (m)
: "d" (xh), "a" (xl), "r" (mod())
);
value = m;
#else
value = normalize(static_cast<int64_t>(value) * static_cast<int64_t>(rhs.value));
#endif
return *this;
}
template <typename U = T>
typename enable_if<is_same<typename Modular<U>::Type, int64_t>::value, Modular>::type& operator*=(const Modular& rhs) {
int64_t q = static_cast<int64_t>(static_cast<long double>(value) * rhs.value / mod());
value = normalize(value * rhs.value - q * mod());
return *this;
}
template <typename U = T>
typename enable_if<!is_integral<typename Modular<U>::Type>::value, Modular>::type& operator*=(const Modular& rhs) {
value = normalize(value * rhs.value);
return *this;
}
 
Modular& operator/=(const Modular& other) { return *this *= Modular(inverse(other.value, mod())); }
 
template <typename U>
friend const Modular<U>& abs(const Modular<U>& v) { return v; }
 
template <typename U>
friend bool operator==(const Modular<U>& lhs, const Modular<U>& rhs);
 
template <typename U>
friend bool operator<(const Modular<U>& lhs, const Modular<U>& rhs);
 
template <typename U>
friend std::istream& operator>>(std::istream& stream, Modular<U>& number);
 
private:
Type value;
};
 
template <typename T> bool operator==(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value == rhs.value; }
template <typename T, typename U> bool operator==(const Modular<T>& lhs, U rhs) { return lhs == Modular<T>(rhs); }
template <typename T, typename U> bool operator==(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) == rhs; }
 
template <typename T> bool operator!=(const Modular<T>& lhs, const Modular<T>& rhs) { return !(lhs == rhs); }
template <typename T, typename U> bool operator!=(const Modular<T>& lhs, U rhs) { return !(lhs == rhs); }
template <typename T, typename U> bool operator!=(U lhs, const Modular<T>& rhs) { return !(lhs == rhs); }
 
template <typename T> bool operator<(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value < rhs.value; }
 
template <typename T> Modular<T> operator+(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) += rhs; }
template <typename T, typename U> Modular<T> operator+(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) += rhs; }
template <typename T, typename U> Modular<T> operator+(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) += rhs; }
 
template <typename T> Modular<T> operator-(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) -= rhs; }
template <typename T, typename U> Modular<T> operator-(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) -= rhs; }
template <typename T, typename U> Modular<T> operator-(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) -= rhs; }
 
template <typename T> Modular<T> operator*(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T, typename U> Modular<T> operator*(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T, typename U> Modular<T> operator*(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; }
 
template <typename T> Modular<T> operator/(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; }
template <typename T, typename U> Modular<T> operator/(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) /= rhs; }
template <typename T, typename U> Modular<T> operator/(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; }
 
template<typename T, typename U>
Modular<T> power(const Modular<T>& a, const U& b) {
assert(b >= 0);
Modular<T> x = a, res = 1;
U p = b;
while (p > 0) {
if (p & 1) res *= x;
x *= x;
p >>= 1;
}
return res;
}
 
template <typename T>
bool IsZero(const Modular<T>& number) {
return number() == 0;
}
 
template <typename T>
string to_string(const Modular<T>& number) {
return to_string(number());
}
 
template <typename T>
std::ostream& operator<<(std::ostream& stream, const Modular<T>& number) {
return stream << number();
}
 
template <typename T>
std::istream& operator>>(std::istream& stream, Modular<T>& number) {
typename common_type<typename Modular<T>::Type, int64_t>::type x;
stream >> x;
number.value = Modular<T>::normalize(x);
return stream;
}
 
/*
using ModType = int;
 
struct VarMod { static ModType value; };
ModType VarMod::value;
ModType& md = VarMod::value;
using Mint = Modular<VarMod>;
*/
 
constexpr int md = (int) 1e9 + 7;
using Mint = Modular<std::integral_constant<decay<decltype(md)>::type, md>>;
 
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int h, w;
cin >> h >> w;
vector<string> s(h);
for (int i = 0; i < h; i++) {
    cin >> s[i];
}
vector<vector<int>> stonesD(h + 1, vector<int>(w + 1));
vector<vector<int>> stonesR(h + 1, vector<int>(w + 1));
for (int i = h - 1; i >= 0; i--) {
for (int j = w - 1; j >= 0; j--) {
stonesD[i][j] = stonesD[i + 1][j] + (s[i][j] == 'R');
stonesR[i][j] = stonesR[i][j + 1] + (s[i][j] == 'R');
}
}
vector<vector<Mint>> dpD(h + 1, vector<Mint>(w + 1));
vector<vector<Mint>> dpR(h + 1, vector<Mint>(w + 1));
for (int i = h - 1; i >= 0; i--) {
for (int j = w - 1; j >= 0; j--) {
if (i == h - 1 && j == w - 1) {
continue;
}
dpR[i][j] = dpR[i][j + 1] + dpD[i][j + 1];
dpD[i][j] = dpD[i + 1][j] + dpR[i + 1][j];
if (i < h - 1 && s[i + 1][j] == 'R') {
        dpD[i][j] -= dpR[h - stonesD[i + 1][j]][j];
      }
      if (j < w - 1 && s[i][j + 1] == 'R') {
        dpR[i][j] -= dpD[i][w - stonesR[i][j + 1]];
      }
      if (i == h - 1) {
        dpR[i][j] = (stonesR[i][j + 1] == 0 ? 1 : 0);
      }
      if (j == w - 1) {
        dpD[i][j] = (stonesD[i + 1][j] == 0 ? 1 : 0);
      }
    }
  }
  debug(dpD);
  debug(dpR);
  Mint ans = dpD[0][0] + dpR[0][0];
  if (h == 1 && w == 1 && s[0][0] == '.') {
    ans = 1;
  }
  cout << ans << '\n';
  return 0;
}