This is the java implementation of performing Discrete Fourier Transform using Fast Fourier Transform algorithm. This class finds the DFT of N (power of 2) complex elements, generated randomly, using FFT. Further verification is done by taking the Inverse Discrete Fourier Transform, again using FFT.
Here is the source code of the Java Program to Compute Discrete Fourier Transform Using the Fast Fourier Transform Approach. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
// This is a sample program to perform DFT using FFT, FFT is performed on random input sequence
public class FFT
{
public static class Complex
{
private final double re; // the real part
private final double im; // the imaginary part
// create a new object with the given real and imaginary parts
public Complex(double real, double imag)
{
re = real;
im = imag;
}
// return a string representation of the invoking Complex object
public String toString()
{
if (im == 0)
return re + "";
if (re == 0)
return im + "i";
if (im < 0)
return re + " - " + (-im) + "i";
return re + " + " + im + "i";
}
// return abs/modulus/magnitude and angle/phase/argument
public double abs()
{
return Math.hypot(re, im);
} // Math.sqrt(re*re + im*im)
public double phase()
{
return Math.atan2(im, re);
} // between -pi and pi
// return a new Complex object whose value is (this + b)
public Complex plus(Complex b)
{
Complex a = this; // invoking object
double real = a.re + b.re;
double imag = a.im + b.im;
return new Complex(real, imag);
}
// return a new Complex object whose value is (this - b)
public Complex minus(Complex b)
{
Complex a = this;
double real = a.re - b.re;
double imag = a.im - b.im;
return new Complex(real, imag);
}
// return a new Complex object whose value is (this * b)
public Complex times(Complex b)
{
Complex a = this;
double real = a.re * b.re - a.im * b.im;
double imag = a.re * b.im + a.im * b.re;
return new Complex(real, imag);
}
// scalar multiplication
// return a new object whose value is (this * alpha)
public Complex times(double alpha)
{
return new Complex(alpha * re, alpha * im);
}
// return a new Complex object whose value is the conjugate of this
public Complex conjugate() {
return new Complex(re, -im);
}
// return a new Complex object whose value is the reciprocal of this
public Complex reciprocal()
{
double scale = re * re + im * im;
return new Complex(re / scale, -im / scale);
}
// return the real or imaginary part
public double re()
{
return re;
}
public double im()
{
return im;
}
// return a / b
public Complex divides(Complex b)
{
Complex a = this;
return a.times(b.reciprocal());
}
// return a new Complex object whose value is the complex exponential of
// this
public Complex exp()
{
return new Complex(Math.exp(re) * Math.cos(im), Math.exp(re)
* Math.sin(im));
}
// return a new Complex object whose value is the complex sine of this
public Complex sin()
{
return new Complex(Math.sin(re) * Math.cosh(im), Math.cos(re)
* Math.sinh(im));
}
// return a new Complex object whose value is the complex cosine of this
public Complex cos()
{
return new Complex(Math.cos(re) * Math.cosh(im), -Math.sin(re)
* Math.sinh(im));
}
// return a new Complex object whose value is the complex tangent of
// this
public Complex tan()
{
return sin().divides(cos());
}
// a static version of plus
public static Complex plus(Complex a, Complex b)
{
double real = a.re + b.re;
double imag = a.im + b.im;
Complex sum = new Complex(real, imag);
return sum;
}
// compute the FFT of x[], assuming its length is a power of 2
public static Complex[] fft(Complex[] x)
{
int N = x.length;
// base case
if (N == 1)
return new Complex[] { x[0] };
// radix 2 Cooley-Tukey FFT
if (N % 2 != 0)
{
throw new RuntimeException("N is not a power of 2");
}
// fft of even terms
Complex[] even = new Complex[N / 2];
for (int k = 0; k < N / 2; k++)
{
even[k] = x[2 * k];
}
Complex[] q = fft(even);
// fft of odd terms
Complex[] odd = even; // reuse the array
for (int k = 0; k < N / 2; k++)
{
odd[k] = x[2 * k + 1];
}
Complex[] r = fft(odd);
// combine
Complex[] y = new Complex[N];
for (int k = 0; k < N / 2; k++)
{
double kth = -2 * k * Math.PI / N;
Complex wk = new Complex(Math.cos(kth), Math.sin(kth));
y[k] = q[k].plus(wk.times(r[k]));
y[k + N / 2] = q[k].minus(wk.times(r[k]));
}
return y;
}
// compute the inverse FFT of x[], assuming its length is a power of 2
public static Complex[] ifft(Complex[] x)
{
int N = x.length;
Complex[] y = new Complex[N];
// take conjugate
for (int i = 0; i < N; i++)
{
y[i] = x[i].conjugate();
}
// compute forward FFT
y = fft(y);
// take conjugate again
for (int i = 0; i < N; i++)
{
y[i] = y[i].conjugate();
}
// divide by N
for (int i = 0; i < N; i++)
{
y[i] = y[i].times(1.0 / N);
}
return y;
}
// display an array of Complex numbers to standard output
public static void show(Complex[] x, String title)
{
System.out.println(title);
for (int i = 0; i < x.length; i++)
{
System.out.println(x[i]);
}
System.out.println();
}
public static void main(String[] args)
{
int N = 8;//Integer.parseInt(args[0]);
Complex[] x = new Complex[N];
// original data
for (int i = 0; i < N; i++)
{
x[i] = new Complex(i, 0);
x[i] = new Complex(-2 * Math.random() + 1, 0);
}
show(x, "x");
// FFT of original data
Complex[] y = fft(x);
show(y, "y = fft(x)");
// take inverse FFT
Complex[] z = ifft(y);
show(z, "z = ifft(y)");
}
}
}
Output:
$ javac FFT.java $ java FFT x 0.5568836254037923 0.8735842104393365 0.6099699812709252 0.5631502515566189 -0.518857260970139 -0.5946393148293805 0.47144753318047794 -0.3501597962417593 y = fft(x) 1.6113792298098721 1.4681239692650163 - 1.8225209872296184i -1.0433911500177497 - 0.06595444029509645i 0.6833578034828462 - 1.545476091048724i 0.6275085279602408 0.6833578034828462 + 1.545476091048724i -1.0433911500177497 + 0.06595444029509645i 1.4681239692650163 + 1.8225209872296184i z = ifft(y) 0.5568836254037923 0.8735842104393365 - 5.652078740871965E-17i 0.6099699812709252 - 4.24102681660054E-18i 0.5631502515566189 - 5.4501515053796015E-17i -0.518857260970139 -0.5946393148293805 + 5.4501515053796015E-17i 0.47144753318047794 + 4.24102681660054E-18i -0.3501597962417593 + 5.652078740871965E-17i
Related posts:
Filtering a Stream of Optionals in Java
Java Program to Implement Merge Sort Algorithm on Linked List
Java Program to Check the Connectivity of Graph Using BFS
Java Program to Implement Efficient O(log n) Fibonacci generator
Java Program to Implement Binary Heap
Spring Data – CrudRepository save() Method
Java Program to Implement Dijkstra’s Algorithm using Queue
Từ khóa throw và throws trong Java
Programmatic Transaction Management in Spring
Java Program to Implement the One Time Pad Algorithm
Unsatisfied Dependency in Spring
A Guide to ConcurrentMap
So sánh HashMap và HashSet trong Java
Spring Data Reactive Repositories with MongoDB
So sánh ArrayList và LinkedList trong Java
Exploring the New Spring Cloud Gateway
OAuth 2.0 Resource Server With Spring Security 5
Jackson vs Gson
Getting a File’s Mime Type in Java
Java Program to Perform Matrix Multiplication
Java Program to Implement Depth-limited Search
Jackson Annotation Examples
Tìm hiểu cơ chế Lazy Evaluation của Stream trong Java 8
Encode a String to UTF-8 in Java
Simplify the DAO with Spring and Java Generics
Wrapper Classes in Java
HandlerAdapters in Spring MVC
Java Program to Implement Slicker Algorithm that avoids Triangulation to Find Area of a Polygon
Java Program to Evaluate an Expression using Stacks
Giới thiệu Google Guice – Binding
Adding a Newline Character to a String in Java
Spring Boot - Enabling HTTPS