Java Program to Implement AVL Tree

This is a Java Program to implement AVL Tree. An AVL tree is a self-balancing binary search tree, and it was the first such data structure to be invented. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Lookup, insertion, and deletion all take O(log n) time in both the average and worst cases, where n is the number of nodes in the tree prior to the operation. Insertions and deletions may require the tree to be rebalanced by one or more tree rotations. This program is based on the implementation by Mark Allen Weiss.

Here is the source code of the Java program to implement AVL Tree. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.

/*
 *  Java Program to Implement AVL Tree
 */
 
 import java.util.Scanner;
 
 /* Class AVLNode */
 class AVLNode
 {    
     AVLNode left, right;
     int data;
     int height;
 
     /* Constructor */
     public AVLNode()
     {
         left = null;
         right = null;
         data = 0;
         height = 0;
     }
     /* Constructor */
     public AVLNode(int n)
     {
         left = null;
         right = null;
         data = n;
         height = 0;
     }     
 }
 
 /* Class AVLTree */
 class AVLTree
 {
     private AVLNode root;     
 
     /* Constructor */
     public AVLTree()
     {
         root = null;
     }
     /* Function to check if tree is empty */
     public boolean isEmpty()
     {
         return root == null;
     }
     /* Make the tree logically empty */
     public void makeEmpty()
     {
         root = null;
     }
     /* Function to insert data */
     public void insert(int data)
     {
         root = insert(data, root);
     }
     /* Function to get height of node */
     private int height(AVLNode t )
     {
         return t == null ? -1 : t.height;
     }
     /* Function to max of left/right node */
     private int max(int lhs, int rhs)
     {
         return lhs > rhs ? lhs : rhs;
     }
     /* Function to insert data recursively */
     private AVLNode insert(int x, AVLNode t)
     {
         if (t == null)
             t = new AVLNode(x);
         else if (x < t.data)
         {
             t.left = insert( x, t.left );
             if( height( t.left ) - height( t.right ) == 2 )
                 if( x < t.left.data )
                     t = rotateWithLeftChild( t );
                 else
                     t = doubleWithLeftChild( t );
         }
         else if( x > t.data )
         {
             t.right = insert( x, t.right );
             if( height( t.right ) - height( t.left ) == 2 )
                 if( x > t.right.data)
                     t = rotateWithRightChild( t );
                 else
                     t = doubleWithRightChild( t );
         }
         else
           ;  // Duplicate; do nothing
         t.height = max( height( t.left ), height( t.right ) ) + 1;
         return t;
     }
     /* Rotate binary tree node with left child */     
     private AVLNode rotateWithLeftChild(AVLNode k2)
     {
         AVLNode k1 = k2.left;
         k2.left = k1.right;
         k1.right = k2;
         k2.height = max( height( k2.left ), height( k2.right ) ) + 1;
         k1.height = max( height( k1.left ), k2.height ) + 1;
         return k1;
     }
 
     /* Rotate binary tree node with right child */
     private AVLNode rotateWithRightChild(AVLNode k1)
     {
         AVLNode k2 = k1.right;
         k1.right = k2.left;
         k2.left = k1;
         k1.height = max( height( k1.left ), height( k1.right ) ) + 1;
         k2.height = max( height( k2.right ), k1.height ) + 1;
         return k2;
     }
     /**
      * Double rotate binary tree node: first left child
      * with its right child; then node k3 with new left child */
     private AVLNode doubleWithLeftChild(AVLNode k3)
     {
         k3.left = rotateWithRightChild( k3.left );
         return rotateWithLeftChild( k3 );
     }
     /**
      * Double rotate binary tree node: first right child
      * with its left child; then node k1 with new right child */      
     private AVLNode doubleWithRightChild(AVLNode k1)
     {
         k1.right = rotateWithLeftChild( k1.right );
         return rotateWithRightChild( k1 );
     }    
     /* Functions to count number of nodes */
     public int countNodes()
     {
         return countNodes(root);
     }
     private int countNodes(AVLNode r)
     {
         if (r == null)
             return 0;
         else
         {
             int l = 1;
             l += countNodes(r.left);
             l += countNodes(r.right);
             return l;
         }
     }
     /* Functions to search for an element */
     public boolean search(int val)
     {
         return search(root, val);
     }
     private boolean search(AVLNode r, int val)
     {
         boolean found = false;
         while ((r != null) && !found)
         {
             int rval = r.data;
             if (val < rval)
                 r = r.left;
             else if (val > rval)
                 r = r.right;
             else
             {
                 found = true;
                 break;
             }
             found = search(r, val);
         }
         return found;
     }
     /* Function for inorder traversal */
     public void inorder()
     {
         inorder(root);
     }
     private void inorder(AVLNode r)
     {
         if (r != null)
         {
             inorder(r.left);
             System.out.print(r.data +" ");
             inorder(r.right);
         }
     }
     /* Function for preorder traversal */
     public void preorder()
     {
         preorder(root);
     }
     private void preorder(AVLNode r)
     {
         if (r != null)
         {
             System.out.print(r.data +" ");
             preorder(r.left);             
             preorder(r.right);
         }
     }
     /* Function for postorder traversal */
     public void postorder()
     {
         postorder(root);
     }
     private void postorder(AVLNode r)
     {
         if (r != null)
         {
             postorder(r.left);             
             postorder(r.right);
             System.out.print(r.data +" ");
         }
     }     
 }
 
 /* Class AVL Tree Test */
 public class AVLTreeTest
 {
     public static void main(String[] args)
    {            
        Scanner scan = new Scanner(System.in);
        /* Creating object of AVLTree */
        AVLTree avlt = new AVLTree(); 
 
        System.out.println("AVLTree Tree Test\n");          
        char ch;
        /*  Perform tree operations  */
        do    
        {
            System.out.println("\nAVLTree Operations\n");
            System.out.println("1. insert ");
            System.out.println("2. search");
            System.out.println("3. count nodes");
            System.out.println("4. check empty");
            System.out.println("5. clear tree");
 
            int choice = scan.nextInt();            
            switch (choice)
            {
            case 1 : 
                System.out.println("Enter integer element to insert");
                avlt.insert( scan.nextInt() );                     
                break;                          
            case 2 : 
                System.out.println("Enter integer element to search");
                System.out.println("Search result : "+ avlt.search( scan.nextInt() ));
                break;                                          
            case 3 : 
                System.out.println("Nodes = "+ avlt.countNodes());
                break;     
            case 4 : 
                System.out.println("Empty status = "+ avlt.isEmpty());
                break;     
            case 5 : 
                System.out.println("\nTree Cleared");
                avlt.makeEmpty();
                break;         
            default : 
                System.out.println("Wrong Entry \n ");
                break;   
            }
            /*  Display tree  */ 
            System.out.print("\nPost order : ");
            avlt.postorder();
            System.out.print("\nPre order : ");
            avlt.preorder();
            System.out.print("\nIn order : ");
            avlt.inorder();
 
            System.out.println("\nDo you want to continue (Type y or n) \n");
            ch = scan.next().charAt(0);                        
        } while (ch == 'Y'|| ch == 'y');               
    }
 }
AVLTree Tree Test
 
 
AVLTree Operations
 
1. insert
2. search
3. count nodes
4. check empty
5. clear tree
4
Empty status = true
 
Post order :
Pre order :
In order :
Do you want to continue (Type y or n)
 
y
 
AVLTree Operations
 
1. insert
2. search
3. count nodes
4. check empty
5. clear tree
1
Enter integer element to insert
10
 
Post order : 10
Pre order : 10
In order : 10
Do you want to continue (Type y or n)
 
y
 
AVLTree Operations
 
1. insert
2. search
3. count nodes
4. check empty
5. clear tree
1
Enter integer element to insert
9
 
Post order : 9 10
Pre order : 10 9
In order : 9 10
Do you want to continue (Type y or n)
 
y
 
AVLTree Operations
 
1. insert
2. search
3. count nodes
4. check empty
5. clear tree
1
Enter integer element to insert
8
 
Post order : 8 10 9
Pre order : 9 8 10
In order : 8 9 10
Do you want to continue (Type y or n)
 
y
 
AVLTree Operations
 
1. insert
2. search
3. count nodes
4. check empty
5. clear tree
1
Enter integer element to insert
7
 
Post order : 7 8 10 9
Pre order : 9 8 7 10
In order : 7 8 9 10
Do you want to continue (Type y or n)
 
y
 
AVLTree Operations
 
1. insert
2. search
3. count nodes
4. check empty
5. clear tree
1
Enter integer element to insert
6
 
Post order : 6 8 7 10 9
Pre order : 9 7 6 8 10
In order : 6 7 8 9 10
Do you want to continue (Type y or n)
 
y
 
AVLTree Operations
 
1. insert
2. search
3. count nodes
4. check empty
5. clear tree
1
Enter integer element to insert
5
 
Post order : 5 6 8 10 9 7
Pre order : 7 6 5 9 8 10
In order : 5 6 7 8 9 10
Do you want to continue (Type y or n)
 
y
 
AVLTree Operations
 
1. insert
2. search
3. count nodes
4. check empty
5. clear tree
1
Enter integer element to insert
4
 
Post order : 4 6 5 8 10 9 7
Pre order : 7 5 4 6 9 8 10
In order : 4 5 6 7 8 9 10
Do you want to continue (Type y or n)
 
y
 
AVLTree Operations
 
1. insert
2. search
3. count nodes
4. check empty
5. clear tree
1
Enter integer element to insert
3
 
Post order : 3 4 6 5 8 10 9 7
Pre order : 7 5 4 3 6 9 8 10
In order : 3 4 5 6 7 8 9 10
Do you want to continue (Type y or n)
 
y
 
AVLTree Operations
 
1. insert
2. search
3. count nodes
4. check empty
5. clear tree
1
Enter integer element to insert
2
 
Post order : 2 4 3 6 5 8 10 9 7
Pre order : 7 5 3 2 4 6 9 8 10
In order : 2 3 4 5 6 7 8 9 10
Do you want to continue (Type y or n)
 
y
 
AVLTree Operations
 
1. insert
2. search
3. count nodes
4. check empty
5. clear tree
1
Enter integer element to insert
1
 
Post order : 1 2 4 6 5 3 8 10 9 7
Pre order : 7 3 2 1 5 4 6 9 8 10
In order : 1 2 3 4 5 6 7 8 9 10
Do you want to continue (Type y or n)
 
y
 
AVLTree Operations
 
1. insert
2. search
3. count nodes
4. check empty
5. clear tree
1
Enter integer element to insert
0
 
Post order : 0 2 1 4 6 5 3 8 10 9 7
Pre order : 7 3 1 0 2 5 4 6 9 8 10
In order : 0 1 2 3 4 5 6 7 8 9 10
Do you want to continue (Type y or n)
 
y
 
AVLTree Operations
 
1. insert
2. search
3. count nodes
4. check empty
5. clear tree
3
Nodes = 11
 
Post order : 0 2 1 4 6 5 3 8 10 9 7
Pre order : 7 3 1 0 2 5 4 6 9 8 10
In order : 0 1 2 3 4 5 6 7 8 9 10
Do you want to continue (Type y or n)
 
y
 
AVLTree Operations
 
1. insert
2. search
3. count nodes
4. check empty
5. clear tree
2
Enter integer element to search
12
Search result : false
 
Post order : 0 2 1 4 6 5 3 8 10 9 7
Pre order : 7 3 1 0 2 5 4 6 9 8 10
In order : 0 1 2 3 4 5 6 7 8 9 10
Do you want to continue (Type y or n)
 
y
 
AVLTree Operations
 
1. insert
2. search
3. count nodes
4. check empty
5. clear tree
2
Enter integer element to search
4
Search result : true
 
Post order : 0 2 1 4 6 5 3 8 10 9 7
Pre order : 7 3 1 0 2 5 4 6 9 8 10
In order : 0 1 2 3 4 5 6 7 8 9 10
Do you want to continue (Type y or n)
 
y
 
AVLTree Operations
 
1. insert
2. search
3. count nodes
4. check empty
5. clear tree
5
 
Tree Cleared
 
Post order :
Pre order :
In order :
Do you want to continue (Type y or n)
 
y
 
AVLTree Operations
 
1. insert
2. search
3. count nodes
4. check empty
5. clear tree
4
Empty status = true
 
Post order :
Pre order :
In order :
Do you want to continue (Type y or n)
 
n

Related posts:

Getting Started with Forms in Spring MVC
Giới thiệu Json Web Token (JWT)
Hướng dẫn tạo và sử dụng ThreadPool trong Java
Spring @RequestParam Annotation
Initialize a HashMap in Java
Introduction to Spring Data REST
Java Program to Implement SynchronosQueue API
Java Program to Find the Edge Connectivity of a Graph
Java Program to Implement Rolling Hash
“Stream has already been operated upon or closed” Exception in Java
Java Program to Find the Connected Components of an UnDirected Graph
Java Program to Implement the Hungarian Algorithm for Bipartite Matching
Spring Data MongoDB Transactions
Properties with Spring and Spring Boot
Jackson Unmarshalling JSON with Unknown Properties
A Guide to Java SynchronousQueue
A Guide to Apache Commons Collections CollectionUtils
Java Program to Implement Sorted Doubly Linked List
Java Program to Implement a Binary Search Tree using Linked Lists
Encode a String to UTF-8 in Java
Java Program to Create a Random Graph Using Random Edge Generation
Java Program to Implement the String Search Algorithm for Short Text Sizes
Convert char to String in Java
Simultaneous Spring WebClient Calls
Java Program to Implement Find all Cross Edges in a Graph
JPA/Hibernate Persistence Context
Spring 5 Functional Bean Registration
Guide to Spring Cloud Kubernetes
Java Program to Implement Euler Circuit Problem
Java Program to Construct a Random Graph by the Method of Random Edge Selection
Java Program to Implement Heap Sort Using Library Functions
Java Optional as Return Type