Java Program to Implement the Hungarian Algorithm for Bipartite Matching

This is a java program to implement Hungarian Algorithm for Bipartite Matching. The Hungarian method is a combinatorial optimization algorithm that solves the assignment problem in polynomial time and which anticipated later primal-dual methods.

Here is the source code of the Java Program to Implement the Hungarian Algorithm for Bipartite Matching. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.

package com.maixuanviet.graph;
 
import java.util.Arrays;
import java.util.Scanner;
 
public class HungarianBipartiteMatching
{
    private final double[][] costMatrix;
    private final int        rows, cols, dim;
    private final double[]   labelByWorker, labelByJob;
    private final int[]      minSlackWorkerByJob;
    private final double[]   minSlackValueByJob;
    private final int[]      matchJobByWorker, matchWorkerByJob;
    private final int[]      parentWorkerByCommittedJob;
    private final boolean[]  committedWorkers;
 
    public HungarianBipartiteMatching(double[][] costMatrix)
    {
        this.dim = Math.max(costMatrix.length, costMatrix[0].length);
        this.rows = costMatrix.length;
        this.cols = costMatrix[0].length;
        this.costMatrix = new double[this.dim][this.dim];
        for (int w = 0; w < this.dim; w++)
        {
            if (w < costMatrix.length)
            {
                if (costMatrix[w].length != this.cols)
                {
                    throw new IllegalArgumentException("Irregular cost matrix");
                }
                this.costMatrix[w] = Arrays.copyOf(costMatrix[w], this.dim);
            }
            else
            {
                this.costMatrix[w] = new double[this.dim];
            }
        }
        labelByWorker = new double[this.dim];
        labelByJob = new double[this.dim];
        minSlackWorkerByJob = new int[this.dim];
        minSlackValueByJob = new double[this.dim];
        committedWorkers = new boolean[this.dim];
        parentWorkerByCommittedJob = new int[this.dim];
        matchJobByWorker = new int[this.dim];
        Arrays.fill(matchJobByWorker, -1);
        matchWorkerByJob = new int[this.dim];
        Arrays.fill(matchWorkerByJob, -1);
    }
 
    protected void computeInitialFeasibleSolution()
    {
        for (int j = 0; j < dim; j++)
        {
            labelByJob[j] = Double.POSITIVE_INFINITY;
        }
        for (int w = 0; w < dim; w++)
        {
            for (int j = 0; j < dim; j++)
            {
                if (costMatrix[w][j] < labelByJob[j])
                {
                    labelByJob[j] = costMatrix[w][j];
                }
            }
        }
    }
 
    public int[] execute()
    {
        /*
         * Heuristics to improve performance: Reduce rows and columns by their
         * smallest element, compute an initial non-zero dual feasible solution
         * and
         * create a greedy matching from workers to jobs of the cost matrix.
         */
        reduce();
        computeInitialFeasibleSolution();
        greedyMatch();
        int w = fetchUnmatchedWorker();
        while (w < dim)
        {
            initializePhase(w);
            executePhase();
            w = fetchUnmatchedWorker();
        }
        int[] result = Arrays.copyOf(matchJobByWorker, rows);
        for (w = 0; w < result.length; w++)
        {
            if (result[w] >= cols)
            {
                result[w] = -1;
            }
        }
        return result;
    }
 
    protected void executePhase()
    {
        while (true)
        {
            int minSlackWorker = -1, minSlackJob = -1;
            double minSlackValue = Double.POSITIVE_INFINITY;
            for (int j = 0; j < dim; j++)
            {
                if (parentWorkerByCommittedJob[j] == -1)
                {
                    if (minSlackValueByJob[j] < minSlackValue)
                    {
                        minSlackValue = minSlackValueByJob[j];
                        minSlackWorker = minSlackWorkerByJob[j];
                        minSlackJob = j;
                    }
                }
            }
            if (minSlackValue > 0)
            {
                updateLabeling(minSlackValue);
            }
            parentWorkerByCommittedJob[minSlackJob] = minSlackWorker;
            if (matchWorkerByJob[minSlackJob] == -1)
            {
                /*
                 * An augmenting path has been found.
                 */
                int committedJob = minSlackJob;
                int parentWorker = parentWorkerByCommittedJob[committedJob];
                while (true)
                {
                    int temp = matchJobByWorker[parentWorker];
                    match(parentWorker, committedJob);
                    committedJob = temp;
                    if (committedJob == -1)
                    {
                        break;
                    }
                    parentWorker = parentWorkerByCommittedJob[committedJob];
                }
                return;
            }
            else
            {
                /*
                 * Update slack values since we increased the size of the
                 * committed
                 * workers set.
                 */
                int worker = matchWorkerByJob[minSlackJob];
                committedWorkers[worker] = true;
                for (int j = 0; j < dim; j++)
                {
                    if (parentWorkerByCommittedJob[j] == -1)
                    {
                        double slack = costMatrix[worker][j]
                                - labelByWorker[worker] - labelByJob[j];
                        if (minSlackValueByJob[j] > slack)
                        {
                            minSlackValueByJob[j] = slack;
                            minSlackWorkerByJob[j] = worker;
                        }
                    }
                }
            }
        }
    }
 
    protected int fetchUnmatchedWorker()
    {
        int w;
        for (w = 0; w < dim; w++)
        {
            if (matchJobByWorker[w] == -1)
            {
                break;
            }
        }
        return w;
    }
 
    protected void greedyMatch()
    {
        for (int w = 0; w < dim; w++)
        {
            for (int j = 0; j < dim; j++)
            {
                if (matchJobByWorker[w] == -1
                        && matchWorkerByJob[j] == -1
                        && costMatrix[w][j] - labelByWorker[w] - labelByJob[j] == 0)
                {
                    match(w, j);
                }
            }
        }
    }
 
    protected void initializePhase(int w)
    {
        Arrays.fill(committedWorkers, false);
        Arrays.fill(parentWorkerByCommittedJob, -1);
        committedWorkers[w] = true;
        for (int j = 0; j < dim; j++)
        {
            minSlackValueByJob[j] = costMatrix[w][j] - labelByWorker[w]
                    - labelByJob[j];
            minSlackWorkerByJob[j] = w;
        }
    }
 
    protected void match(int w, int j)
    {
        matchJobByWorker[w] = j;
        matchWorkerByJob[j] = w;
    }
 
    protected void reduce()
    {
        for (int w = 0; w < dim; w++)
        {
            double min = Double.POSITIVE_INFINITY;
            for (int j = 0; j < dim; j++)
            {
                if (costMatrix[w][j] < min)
                {
                    min = costMatrix[w][j];
                }
            }
            for (int j = 0; j < dim; j++)
            {
                costMatrix[w][j] -= min;
            }
        }
        double[] min = new double[dim];
        for (int j = 0; j < dim; j++)
        {
            min[j] = Double.POSITIVE_INFINITY;
        }
        for (int w = 0; w < dim; w++)
        {
            for (int j = 0; j < dim; j++)
            {
                if (costMatrix[w][j] < min[j])
                {
                    min[j] = costMatrix[w][j];
                }
            }
        }
        for (int w = 0; w < dim; w++)
        {
            for (int j = 0; j < dim; j++)
            {
                costMatrix[w][j] -= min[j];
            }
        }
    }
 
    protected void updateLabeling(double slack)
    {
        for (int w = 0; w < dim; w++)
        {
            if (committedWorkers[w])
            {
                labelByWorker[w] += slack;
            }
        }
        for (int j = 0; j < dim; j++)
        {
            if (parentWorkerByCommittedJob[j] != -1)
            {
                labelByJob[j] -= slack;
            }
            else
            {
                minSlackValueByJob[j] -= slack;
            }
        }
    }
 
    public static void main(String[] args)
    {
        Scanner sc = new Scanner(System.in);
        System.out.println("Enter the dimentsions of the cost matrix: ");
        System.out.println("r:");
        int r = sc.nextInt();
        System.out.println("c:");
        int c = sc.nextInt();
        System.out.println("Enter the cost matrix: <row wise>");
        double[][] cost = new double[r];
        for (int i = 0; i < r; i++)
        {
            for (int j = 0; j < c; j++)
            {
                cost[i][j] = sc.nextDouble();
            }
        }
        HungarianBipartiteMatching hbm = new HungarianBipartiteMatching(cost);
        int[] result = hbm.execute();
        System.out.println("Bipartite Matching: " + Arrays.toString(result));
        sc.close();
    }
}

Output:

$ javac HungarianBipartiteMatching.java
$ java HungarianBipartiteMatching
 
Enter the dimentsions of the cost matrix: 
r: 4
c: 4
Enter the cost matrix: <row wise>
82 	83 	69 	92
77 	37 	49 	92
11 	69 	5 	86
8 	9 	98 	23
Bipartite Matching: [2, 1, 0, 3] //worker 1 should perform job 3, worker 2 should perform job 2 and so on...

Related posts:

Java Program to Implement Pagoda
Java Web Services – Jersey JAX-RS – REST và sử dụng REST API testing tools với Postman
Java Program to Remove the Edges in a Given Cyclic Graph such that its Linear Extension can be Found
Kiểu dữ liệu Ngày Giờ (Date Time) trong java
Send an email with an attachment
Guide to Spring Cloud Kubernetes
Command-Line Arguments in Java
Java 8 Stream API Analogies in Kotlin
Getting Started with GraphQL and Spring Boot
Java – Write a Reader to File
Hướng dẫn Java Design Pattern – Prototype
Converting Java Date to OffsetDateTime
Java Program to Implement Pollard Rho Algorithm
Java – InputStream to Reader
Java Program to Implement Knight’s Tour Problem
Hướng dẫn Java Design Pattern – Composite
Java Program to Implement the RSA Algorithm
New in Spring Security OAuth2 – Verify Claims
Jackson – Marshall String to JsonNode
Spring Boot - Flyway Database
Collect a Java Stream to an Immutable Collection
Validations for Enum Types
Java Program to Find Strongly Connected Components in Graphs
Spring Boot Tutorial – Bootstrap a Simple Application
Java Program to Implement PriorityBlockingQueue API
Java Program to Find a Good Feedback Vertex Set
Getting Started with Custom Deserialization in Jackson
Java Program to Find the Edge Connectivity of a Graph
Xử lý ngoại lệ trong Java (Exception Handling)
Java Program to Perform Searching Based on Locality of Reference
Java Program to Check if a Given Graph Contain Hamiltonian Cycle or Not
Adding Shutdown Hooks for JVM Applications