This is a java program to implement Hungarian Algorithm for Bipartite Matching. The Hungarian method is a combinatorial optimization algorithm that solves the assignment problem in polynomial time and which anticipated later primal-dual methods.
Here is the source code of the Java Program to Implement the Hungarian Algorithm for Bipartite Matching. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
package com.maixuanviet.graph;
import java.util.Arrays;
import java.util.Scanner;
public class HungarianBipartiteMatching
{
private final double[][] costMatrix;
private final int rows, cols, dim;
private final double[] labelByWorker, labelByJob;
private final int[] minSlackWorkerByJob;
private final double[] minSlackValueByJob;
private final int[] matchJobByWorker, matchWorkerByJob;
private final int[] parentWorkerByCommittedJob;
private final boolean[] committedWorkers;
public HungarianBipartiteMatching(double[][] costMatrix)
{
this.dim = Math.max(costMatrix.length, costMatrix[0].length);
this.rows = costMatrix.length;
this.cols = costMatrix[0].length;
this.costMatrix = new double[this.dim][this.dim];
for (int w = 0; w < this.dim; w++)
{
if (w < costMatrix.length)
{
if (costMatrix[w].length != this.cols)
{
throw new IllegalArgumentException("Irregular cost matrix");
}
this.costMatrix[w] = Arrays.copyOf(costMatrix[w], this.dim);
}
else
{
this.costMatrix[w] = new double[this.dim];
}
}
labelByWorker = new double[this.dim];
labelByJob = new double[this.dim];
minSlackWorkerByJob = new int[this.dim];
minSlackValueByJob = new double[this.dim];
committedWorkers = new boolean[this.dim];
parentWorkerByCommittedJob = new int[this.dim];
matchJobByWorker = new int[this.dim];
Arrays.fill(matchJobByWorker, -1);
matchWorkerByJob = new int[this.dim];
Arrays.fill(matchWorkerByJob, -1);
}
protected void computeInitialFeasibleSolution()
{
for (int j = 0; j < dim; j++)
{
labelByJob[j] = Double.POSITIVE_INFINITY;
}
for (int w = 0; w < dim; w++)
{
for (int j = 0; j < dim; j++)
{
if (costMatrix[w][j] < labelByJob[j])
{
labelByJob[j] = costMatrix[w][j];
}
}
}
}
public int[] execute()
{
/*
* Heuristics to improve performance: Reduce rows and columns by their
* smallest element, compute an initial non-zero dual feasible solution
* and
* create a greedy matching from workers to jobs of the cost matrix.
*/
reduce();
computeInitialFeasibleSolution();
greedyMatch();
int w = fetchUnmatchedWorker();
while (w < dim)
{
initializePhase(w);
executePhase();
w = fetchUnmatchedWorker();
}
int[] result = Arrays.copyOf(matchJobByWorker, rows);
for (w = 0; w < result.length; w++)
{
if (result[w] >= cols)
{
result[w] = -1;
}
}
return result;
}
protected void executePhase()
{
while (true)
{
int minSlackWorker = -1, minSlackJob = -1;
double minSlackValue = Double.POSITIVE_INFINITY;
for (int j = 0; j < dim; j++)
{
if (parentWorkerByCommittedJob[j] == -1)
{
if (minSlackValueByJob[j] < minSlackValue)
{
minSlackValue = minSlackValueByJob[j];
minSlackWorker = minSlackWorkerByJob[j];
minSlackJob = j;
}
}
}
if (minSlackValue > 0)
{
updateLabeling(minSlackValue);
}
parentWorkerByCommittedJob[minSlackJob] = minSlackWorker;
if (matchWorkerByJob[minSlackJob] == -1)
{
/*
* An augmenting path has been found.
*/
int committedJob = minSlackJob;
int parentWorker = parentWorkerByCommittedJob[committedJob];
while (true)
{
int temp = matchJobByWorker[parentWorker];
match(parentWorker, committedJob);
committedJob = temp;
if (committedJob == -1)
{
break;
}
parentWorker = parentWorkerByCommittedJob[committedJob];
}
return;
}
else
{
/*
* Update slack values since we increased the size of the
* committed
* workers set.
*/
int worker = matchWorkerByJob[minSlackJob];
committedWorkers[worker] = true;
for (int j = 0; j < dim; j++)
{
if (parentWorkerByCommittedJob[j] == -1)
{
double slack = costMatrix[worker][j]
- labelByWorker[worker] - labelByJob[j];
if (minSlackValueByJob[j] > slack)
{
minSlackValueByJob[j] = slack;
minSlackWorkerByJob[j] = worker;
}
}
}
}
}
}
protected int fetchUnmatchedWorker()
{
int w;
for (w = 0; w < dim; w++)
{
if (matchJobByWorker[w] == -1)
{
break;
}
}
return w;
}
protected void greedyMatch()
{
for (int w = 0; w < dim; w++)
{
for (int j = 0; j < dim; j++)
{
if (matchJobByWorker[w] == -1
&& matchWorkerByJob[j] == -1
&& costMatrix[w][j] - labelByWorker[w] - labelByJob[j] == 0)
{
match(w, j);
}
}
}
}
protected void initializePhase(int w)
{
Arrays.fill(committedWorkers, false);
Arrays.fill(parentWorkerByCommittedJob, -1);
committedWorkers[w] = true;
for (int j = 0; j < dim; j++)
{
minSlackValueByJob[j] = costMatrix[w][j] - labelByWorker[w]
- labelByJob[j];
minSlackWorkerByJob[j] = w;
}
}
protected void match(int w, int j)
{
matchJobByWorker[w] = j;
matchWorkerByJob[j] = w;
}
protected void reduce()
{
for (int w = 0; w < dim; w++)
{
double min = Double.POSITIVE_INFINITY;
for (int j = 0; j < dim; j++)
{
if (costMatrix[w][j] < min)
{
min = costMatrix[w][j];
}
}
for (int j = 0; j < dim; j++)
{
costMatrix[w][j] -= min;
}
}
double[] min = new double[dim];
for (int j = 0; j < dim; j++)
{
min[j] = Double.POSITIVE_INFINITY;
}
for (int w = 0; w < dim; w++)
{
for (int j = 0; j < dim; j++)
{
if (costMatrix[w][j] < min[j])
{
min[j] = costMatrix[w][j];
}
}
}
for (int w = 0; w < dim; w++)
{
for (int j = 0; j < dim; j++)
{
costMatrix[w][j] -= min[j];
}
}
}
protected void updateLabeling(double slack)
{
for (int w = 0; w < dim; w++)
{
if (committedWorkers[w])
{
labelByWorker[w] += slack;
}
}
for (int j = 0; j < dim; j++)
{
if (parentWorkerByCommittedJob[j] != -1)
{
labelByJob[j] -= slack;
}
else
{
minSlackValueByJob[j] -= slack;
}
}
}
public static void main(String[] args)
{
Scanner sc = new Scanner(System.in);
System.out.println("Enter the dimentsions of the cost matrix: ");
System.out.println("r:");
int r = sc.nextInt();
System.out.println("c:");
int c = sc.nextInt();
System.out.println("Enter the cost matrix: <row wise>");
double[][] cost = new double[r];
for (int i = 0; i < r; i++)
{
for (int j = 0; j < c; j++)
{
cost[i][j] = sc.nextDouble();
}
}
HungarianBipartiteMatching hbm = new HungarianBipartiteMatching(cost);
int[] result = hbm.execute();
System.out.println("Bipartite Matching: " + Arrays.toString(result));
sc.close();
}
}
Output:
$ javac HungarianBipartiteMatching.java $ java HungarianBipartiteMatching Enter the dimentsions of the cost matrix: r: 4 c: 4 Enter the cost matrix: <row wise> 82 83 69 92 77 37 49 92 11 69 5 86 8 9 98 23 Bipartite Matching: [2, 1, 0, 3] //worker 1 should perform job 3, worker 2 should perform job 2 and so on...
Related posts:
Java Program to Implement Expression Tree
HashSet trong java
Java Program to Implement Euclid GCD Algorithm
Java Program to Implement Hash Tables with Linear Probing
Xây dựng ứng dụng Client-Server với Socket trong Java
Spring Boot - Cloud Configuration Server
Java – Random Long, Float, Integer and Double
Guide to Dynamic Tests in Junit 5
JPA/Hibernate Persistence Context
Spring Boot Application as a Service
Java TreeMap vs HashMap
Java Program to Encode a Message Using Playfair Cipher
Using the Map.Entry Java Class
Hướng dẫn Java Design Pattern – Visitor
Spring Boot - Quick Start
Tổng quan về ngôn ngữ lập trình java
Base64 encoding và decoding trong Java 8
Immutable ArrayList in Java
Setting Up Swagger 2 with a Spring REST API
Spring MVC + Thymeleaf 3.0: New Features
Spring @Primary Annotation
Java Program to Implement Aho-Corasick Algorithm for String Matching
Spring Boot Gradle Plugin
Rest Web service: Filter và Interceptor với Jersey 2.x (P2)
HttpAsyncClient Tutorial
Handling Errors in Spring WebFlux
Hướng dẫn sử dụng Java Reflection
Java Program for Topological Sorting in Graphs
LinkedList trong java
Apache Commons Collections MapUtils
Java Program to Implement vector
Receive email using POP3