This is a java program to implement Hungarian Algorithm for Bipartite Matching. The Hungarian method is a combinatorial optimization algorithm that solves the assignment problem in polynomial time and which anticipated later primal-dual methods.
Here is the source code of the Java Program to Implement the Hungarian Algorithm for Bipartite Matching. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
package com.maixuanviet.graph; import java.util.Arrays; import java.util.Scanner; public class HungarianBipartiteMatching { private final double[][] costMatrix; private final int rows, cols, dim; private final double[] labelByWorker, labelByJob; private final int[] minSlackWorkerByJob; private final double[] minSlackValueByJob; private final int[] matchJobByWorker, matchWorkerByJob; private final int[] parentWorkerByCommittedJob; private final boolean[] committedWorkers; public HungarianBipartiteMatching(double[][] costMatrix) { this.dim = Math.max(costMatrix.length, costMatrix[0].length); this.rows = costMatrix.length; this.cols = costMatrix[0].length; this.costMatrix = new double[this.dim][this.dim]; for (int w = 0; w < this.dim; w++) { if (w < costMatrix.length) { if (costMatrix[w].length != this.cols) { throw new IllegalArgumentException("Irregular cost matrix"); } this.costMatrix[w] = Arrays.copyOf(costMatrix[w], this.dim); } else { this.costMatrix[w] = new double[this.dim]; } } labelByWorker = new double[this.dim]; labelByJob = new double[this.dim]; minSlackWorkerByJob = new int[this.dim]; minSlackValueByJob = new double[this.dim]; committedWorkers = new boolean[this.dim]; parentWorkerByCommittedJob = new int[this.dim]; matchJobByWorker = new int[this.dim]; Arrays.fill(matchJobByWorker, -1); matchWorkerByJob = new int[this.dim]; Arrays.fill(matchWorkerByJob, -1); } protected void computeInitialFeasibleSolution() { for (int j = 0; j < dim; j++) { labelByJob[j] = Double.POSITIVE_INFINITY; } for (int w = 0; w < dim; w++) { for (int j = 0; j < dim; j++) { if (costMatrix[w][j] < labelByJob[j]) { labelByJob[j] = costMatrix[w][j]; } } } } public int[] execute() { /* * Heuristics to improve performance: Reduce rows and columns by their * smallest element, compute an initial non-zero dual feasible solution * and * create a greedy matching from workers to jobs of the cost matrix. */ reduce(); computeInitialFeasibleSolution(); greedyMatch(); int w = fetchUnmatchedWorker(); while (w < dim) { initializePhase(w); executePhase(); w = fetchUnmatchedWorker(); } int[] result = Arrays.copyOf(matchJobByWorker, rows); for (w = 0; w < result.length; w++) { if (result[w] >= cols) { result[w] = -1; } } return result; } protected void executePhase() { while (true) { int minSlackWorker = -1, minSlackJob = -1; double minSlackValue = Double.POSITIVE_INFINITY; for (int j = 0; j < dim; j++) { if (parentWorkerByCommittedJob[j] == -1) { if (minSlackValueByJob[j] < minSlackValue) { minSlackValue = minSlackValueByJob[j]; minSlackWorker = minSlackWorkerByJob[j]; minSlackJob = j; } } } if (minSlackValue > 0) { updateLabeling(minSlackValue); } parentWorkerByCommittedJob[minSlackJob] = minSlackWorker; if (matchWorkerByJob[minSlackJob] == -1) { /* * An augmenting path has been found. */ int committedJob = minSlackJob; int parentWorker = parentWorkerByCommittedJob[committedJob]; while (true) { int temp = matchJobByWorker[parentWorker]; match(parentWorker, committedJob); committedJob = temp; if (committedJob == -1) { break; } parentWorker = parentWorkerByCommittedJob[committedJob]; } return; } else { /* * Update slack values since we increased the size of the * committed * workers set. */ int worker = matchWorkerByJob[minSlackJob]; committedWorkers[worker] = true; for (int j = 0; j < dim; j++) { if (parentWorkerByCommittedJob[j] == -1) { double slack = costMatrix[worker][j] - labelByWorker[worker] - labelByJob[j]; if (minSlackValueByJob[j] > slack) { minSlackValueByJob[j] = slack; minSlackWorkerByJob[j] = worker; } } } } } } protected int fetchUnmatchedWorker() { int w; for (w = 0; w < dim; w++) { if (matchJobByWorker[w] == -1) { break; } } return w; } protected void greedyMatch() { for (int w = 0; w < dim; w++) { for (int j = 0; j < dim; j++) { if (matchJobByWorker[w] == -1 && matchWorkerByJob[j] == -1 && costMatrix[w][j] - labelByWorker[w] - labelByJob[j] == 0) { match(w, j); } } } } protected void initializePhase(int w) { Arrays.fill(committedWorkers, false); Arrays.fill(parentWorkerByCommittedJob, -1); committedWorkers[w] = true; for (int j = 0; j < dim; j++) { minSlackValueByJob[j] = costMatrix[w][j] - labelByWorker[w] - labelByJob[j]; minSlackWorkerByJob[j] = w; } } protected void match(int w, int j) { matchJobByWorker[w] = j; matchWorkerByJob[j] = w; } protected void reduce() { for (int w = 0; w < dim; w++) { double min = Double.POSITIVE_INFINITY; for (int j = 0; j < dim; j++) { if (costMatrix[w][j] < min) { min = costMatrix[w][j]; } } for (int j = 0; j < dim; j++) { costMatrix[w][j] -= min; } } double[] min = new double[dim]; for (int j = 0; j < dim; j++) { min[j] = Double.POSITIVE_INFINITY; } for (int w = 0; w < dim; w++) { for (int j = 0; j < dim; j++) { if (costMatrix[w][j] < min[j]) { min[j] = costMatrix[w][j]; } } } for (int w = 0; w < dim; w++) { for (int j = 0; j < dim; j++) { costMatrix[w][j] -= min[j]; } } } protected void updateLabeling(double slack) { for (int w = 0; w < dim; w++) { if (committedWorkers[w]) { labelByWorker[w] += slack; } } for (int j = 0; j < dim; j++) { if (parentWorkerByCommittedJob[j] != -1) { labelByJob[j] -= slack; } else { minSlackValueByJob[j] -= slack; } } } public static void main(String[] args) { Scanner sc = new Scanner(System.in); System.out.println("Enter the dimentsions of the cost matrix: "); System.out.println("r:"); int r = sc.nextInt(); System.out.println("c:"); int c = sc.nextInt(); System.out.println("Enter the cost matrix: <row wise>"); double[][] cost = new double[r]; for (int i = 0; i < r; i++) { for (int j = 0; j < c; j++) { cost[i][j] = sc.nextDouble(); } } HungarianBipartiteMatching hbm = new HungarianBipartiteMatching(cost); int[] result = hbm.execute(); System.out.println("Bipartite Matching: " + Arrays.toString(result)); sc.close(); } }
Output:
$ javac HungarianBipartiteMatching.java $ java HungarianBipartiteMatching Enter the dimentsions of the cost matrix: r: 4 c: 4 Enter the cost matrix: <row wise> 82 83 69 92 77 37 49 92 11 69 5 86 8 9 98 23 Bipartite Matching: [2, 1, 0, 3] //worker 1 should perform job 3, worker 2 should perform job 2 and so on...
Related posts:
Mapping a Dynamic JSON Object with Jackson
Java Program to Implement Repeated Squaring Algorithm
Create a Custom Auto-Configuration with Spring Boot
REST Web service: Tạo ứng dụng Java RESTful Client với Jersey Client 2.x
Using the Not Operator in If Conditions in Java
Java Program to Implement Brent Cycle Algorithm
Java Program to implement Bit Matrix
Concurrent Test Execution in Spring 5
Examine the internal DNS cache
Apache Commons Collections Bag
Java Program to Check Whether a Directed Graph Contains a Eulerian Path
Spring Cloud – Tracing Services with Zipkin
Introduction to Spring Data JDBC
Java Program to Implement CountMinSketch
Spring @RequestMapping New Shortcut Annotations
Guide to the Java TransferQueue
Các nguyên lý thiết kế hướng đối tượng – SOLID
A Guide to HashSet in Java
The SpringJUnitConfig and SpringJUnitWebConfig Annotations in Spring 5
Java Program to Implement HashMap API
Java Program to Implement SynchronosQueue API
The Order of Tests in JUnit
How to Get All Dates Between Two Dates?
Java Program to Implement Word Wrap Problem
Spring Security Registration – Resend Verification Email
Spring Boot - Internationalization
Java – Reader to String
Java 8 and Infinite Streams
The SpringJUnitConfig and SpringJUnitWebConfig Annotations in Spring 5
Count Occurrences of a Char in a String
Spring Cloud – Adding Angular
Configure a Spring Boot Web Application