This is a java program to implement Hungarian Algorithm for Bipartite Matching. The Hungarian method is a combinatorial optimization algorithm that solves the assignment problem in polynomial time and which anticipated later primal-dual methods.
Here is the source code of the Java Program to Implement the Hungarian Algorithm for Bipartite Matching. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
package com.maixuanviet.graph;
import java.util.Arrays;
import java.util.Scanner;
public class HungarianBipartiteMatching
{
private final double[][] costMatrix;
private final int rows, cols, dim;
private final double[] labelByWorker, labelByJob;
private final int[] minSlackWorkerByJob;
private final double[] minSlackValueByJob;
private final int[] matchJobByWorker, matchWorkerByJob;
private final int[] parentWorkerByCommittedJob;
private final boolean[] committedWorkers;
public HungarianBipartiteMatching(double[][] costMatrix)
{
this.dim = Math.max(costMatrix.length, costMatrix[0].length);
this.rows = costMatrix.length;
this.cols = costMatrix[0].length;
this.costMatrix = new double[this.dim][this.dim];
for (int w = 0; w < this.dim; w++)
{
if (w < costMatrix.length)
{
if (costMatrix[w].length != this.cols)
{
throw new IllegalArgumentException("Irregular cost matrix");
}
this.costMatrix[w] = Arrays.copyOf(costMatrix[w], this.dim);
}
else
{
this.costMatrix[w] = new double[this.dim];
}
}
labelByWorker = new double[this.dim];
labelByJob = new double[this.dim];
minSlackWorkerByJob = new int[this.dim];
minSlackValueByJob = new double[this.dim];
committedWorkers = new boolean[this.dim];
parentWorkerByCommittedJob = new int[this.dim];
matchJobByWorker = new int[this.dim];
Arrays.fill(matchJobByWorker, -1);
matchWorkerByJob = new int[this.dim];
Arrays.fill(matchWorkerByJob, -1);
}
protected void computeInitialFeasibleSolution()
{
for (int j = 0; j < dim; j++)
{
labelByJob[j] = Double.POSITIVE_INFINITY;
}
for (int w = 0; w < dim; w++)
{
for (int j = 0; j < dim; j++)
{
if (costMatrix[w][j] < labelByJob[j])
{
labelByJob[j] = costMatrix[w][j];
}
}
}
}
public int[] execute()
{
/*
* Heuristics to improve performance: Reduce rows and columns by their
* smallest element, compute an initial non-zero dual feasible solution
* and
* create a greedy matching from workers to jobs of the cost matrix.
*/
reduce();
computeInitialFeasibleSolution();
greedyMatch();
int w = fetchUnmatchedWorker();
while (w < dim)
{
initializePhase(w);
executePhase();
w = fetchUnmatchedWorker();
}
int[] result = Arrays.copyOf(matchJobByWorker, rows);
for (w = 0; w < result.length; w++)
{
if (result[w] >= cols)
{
result[w] = -1;
}
}
return result;
}
protected void executePhase()
{
while (true)
{
int minSlackWorker = -1, minSlackJob = -1;
double minSlackValue = Double.POSITIVE_INFINITY;
for (int j = 0; j < dim; j++)
{
if (parentWorkerByCommittedJob[j] == -1)
{
if (minSlackValueByJob[j] < minSlackValue)
{
minSlackValue = minSlackValueByJob[j];
minSlackWorker = minSlackWorkerByJob[j];
minSlackJob = j;
}
}
}
if (minSlackValue > 0)
{
updateLabeling(minSlackValue);
}
parentWorkerByCommittedJob[minSlackJob] = minSlackWorker;
if (matchWorkerByJob[minSlackJob] == -1)
{
/*
* An augmenting path has been found.
*/
int committedJob = minSlackJob;
int parentWorker = parentWorkerByCommittedJob[committedJob];
while (true)
{
int temp = matchJobByWorker[parentWorker];
match(parentWorker, committedJob);
committedJob = temp;
if (committedJob == -1)
{
break;
}
parentWorker = parentWorkerByCommittedJob[committedJob];
}
return;
}
else
{
/*
* Update slack values since we increased the size of the
* committed
* workers set.
*/
int worker = matchWorkerByJob[minSlackJob];
committedWorkers[worker] = true;
for (int j = 0; j < dim; j++)
{
if (parentWorkerByCommittedJob[j] == -1)
{
double slack = costMatrix[worker][j]
- labelByWorker[worker] - labelByJob[j];
if (minSlackValueByJob[j] > slack)
{
minSlackValueByJob[j] = slack;
minSlackWorkerByJob[j] = worker;
}
}
}
}
}
}
protected int fetchUnmatchedWorker()
{
int w;
for (w = 0; w < dim; w++)
{
if (matchJobByWorker[w] == -1)
{
break;
}
}
return w;
}
protected void greedyMatch()
{
for (int w = 0; w < dim; w++)
{
for (int j = 0; j < dim; j++)
{
if (matchJobByWorker[w] == -1
&& matchWorkerByJob[j] == -1
&& costMatrix[w][j] - labelByWorker[w] - labelByJob[j] == 0)
{
match(w, j);
}
}
}
}
protected void initializePhase(int w)
{
Arrays.fill(committedWorkers, false);
Arrays.fill(parentWorkerByCommittedJob, -1);
committedWorkers[w] = true;
for (int j = 0; j < dim; j++)
{
minSlackValueByJob[j] = costMatrix[w][j] - labelByWorker[w]
- labelByJob[j];
minSlackWorkerByJob[j] = w;
}
}
protected void match(int w, int j)
{
matchJobByWorker[w] = j;
matchWorkerByJob[j] = w;
}
protected void reduce()
{
for (int w = 0; w < dim; w++)
{
double min = Double.POSITIVE_INFINITY;
for (int j = 0; j < dim; j++)
{
if (costMatrix[w][j] < min)
{
min = costMatrix[w][j];
}
}
for (int j = 0; j < dim; j++)
{
costMatrix[w][j] -= min;
}
}
double[] min = new double[dim];
for (int j = 0; j < dim; j++)
{
min[j] = Double.POSITIVE_INFINITY;
}
for (int w = 0; w < dim; w++)
{
for (int j = 0; j < dim; j++)
{
if (costMatrix[w][j] < min[j])
{
min[j] = costMatrix[w][j];
}
}
}
for (int w = 0; w < dim; w++)
{
for (int j = 0; j < dim; j++)
{
costMatrix[w][j] -= min[j];
}
}
}
protected void updateLabeling(double slack)
{
for (int w = 0; w < dim; w++)
{
if (committedWorkers[w])
{
labelByWorker[w] += slack;
}
}
for (int j = 0; j < dim; j++)
{
if (parentWorkerByCommittedJob[j] != -1)
{
labelByJob[j] -= slack;
}
else
{
minSlackValueByJob[j] -= slack;
}
}
}
public static void main(String[] args)
{
Scanner sc = new Scanner(System.in);
System.out.println("Enter the dimentsions of the cost matrix: ");
System.out.println("r:");
int r = sc.nextInt();
System.out.println("c:");
int c = sc.nextInt();
System.out.println("Enter the cost matrix: <row wise>");
double[][] cost = new double[r];
for (int i = 0; i < r; i++)
{
for (int j = 0; j < c; j++)
{
cost[i][j] = sc.nextDouble();
}
}
HungarianBipartiteMatching hbm = new HungarianBipartiteMatching(cost);
int[] result = hbm.execute();
System.out.println("Bipartite Matching: " + Arrays.toString(result));
sc.close();
}
}
Output:
$ javac HungarianBipartiteMatching.java $ java HungarianBipartiteMatching Enter the dimentsions of the cost matrix: r: 4 c: 4 Enter the cost matrix: <row wise> 82 83 69 92 77 37 49 92 11 69 5 86 8 9 98 23 Bipartite Matching: [2, 1, 0, 3] //worker 1 should perform job 3, worker 2 should perform job 2 and so on...
Related posts:
How to Read a File in Java
Hướng dẫn Java Design Pattern – Command
Java Web Services – JAX-WS – SOAP
Spring AMQP in Reactive Applications
Java Program to Represent Graph Using Adjacency Matrix
Quick Guide on Loading Initial Data with Spring Boot
Spring Boot - Tracing Micro Service Logs
Hướng dẫn Java Design Pattern – Decorator
Jackson – Marshall String to JsonNode
Compact Strings in Java 9
Redirect to Different Pages after Login with Spring Security
Spring Boot - Cloud Configuration Client
Java Program to Implement ArrayList API
Spring Security Basic Authentication
String Joiner trong Java 8
A Guide to the ViewResolver in Spring MVC
Hướng dẫn Java Design Pattern – Null Object
Introduction to Apache Commons Text
String Processing with Apache Commons Lang 3
How to Delay Code Execution in Java
Java Program to Implement Borwein Algorithm
ClassNotFoundException vs NoClassDefFoundError
Java Program to Implement the String Search Algorithm for Short Text Sizes
Java Program to Generate N Number of Passwords of Length M Each
Java Program to Check if a Directed Graph is a Tree or Not Using DFS
Java Program to Generate a Random UnDirected Graph for a Given Number of Edges
Java Program to Implement Interpolation Search Algorithm
An Introduction to Java.util.Hashtable Class
Tổng quan về ngôn ngữ lập trình java
@Before vs @BeforeClass vs @BeforeEach vs @BeforeAll
Collect a Java Stream to an Immutable Collection
Java Program to Implement Warshall Algorithm