This is a java program to generate a random graph by selecting random number of edges. One important thing to note here is, that we need to decide minimum and maximum number of nodes such that all edges get accommodated. Minimum number of vertices is positive solution to n(n-1) = 2e, where e is number of edges and maximum number of vertices is e+1.
Here is the source code of the Java Program to Construct a Random Graph by the Method of Random Edge Selection. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
import java.util.HashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Random;
public class Random_Edges_Graph2
{
private Map<Integer, List<Integer>> adjacencyList;
public Random_Edges_Graph2(int v)
{
adjacencyList = new HashMap<Integer, List<Integer>>();
for (int i = 1; i <= v; i++)
adjacencyList.put(i, new LinkedList<Integer>());
}
public void setEdge(int to, int from)
{
if (to > adjacencyList.size() || from > adjacencyList.size())
System.out.println("The vertices does not exists");
List<Integer> sls = adjacencyList.get(to);
sls.add(from);
List<Integer> dls = adjacencyList.get(from);
dls.add(to);
}
public List<Integer> getEdge(int to)
{
if (to > adjacencyList.size())
{
System.out.println("The vertices does not exists");
return null;
}
return adjacencyList.get(to);
}
public static void main(String args[])
{
System.out.println("Random Graph Generation");
Random random = new Random();
int e = Math.abs(random.nextInt(21 - 1) + 1);
try
{
int minV = (int) Math.ceil((1 + Math.sqrt(1 + 8 * e)) / 2);
int maxV = e + 1;
int v = Math.abs(random.nextInt(maxV - minV) + minV);
System.out.println("Random graph has "+v+" vertices");
System.out.println("Random graph has "+e+" edges");
Random_Edges_Graph2 reg = new Random_Edges_Graph2(v);
int count = 1, to, from;
while (count <= e)
{
to = Math.abs(random.nextInt(v + 1 - 1) + 1);
from = Math.abs(random.nextInt(v + 1 - 1) + 1);
reg.setEdge(to, from);
count++;
}
System.out
.println("The Adjacency List Representation of the random graph is: ");
for (int i = 1; i <= v; i++)
{
System.out.print(i + " -> ");
List<Integer> edgeList = reg.getEdge(i);
if (edgeList.size() == 0)
System.out.print("null");
else
{
for (int j = 1;; j++)
{
if (j != edgeList.size())
System.out.print(edgeList.get(j - 1) + " -> ");
else {
System.out.print(edgeList.get(j - 1));
break;
}
}
}
System.out.println();
}
}
catch (Exception E)
{
System.out.println("Something went wrong");
}
}
}
Output:
$ javac Random_Edges_Graph2.java $ java Random_Edges_Graph2 Random Graph Generation Random graph has 4 vertices Random graph has 5 edges The Adjacency List Representation of the random graph is: 1 -> 4 2 -> 3 -> 3 -> 4 3 -> 3 -> 3 -> 2 -> 2 4 -> 1 -> 2
Related posts:
Guide to Guava Multimap
Life Cycle of a Thread in Java
Java Program to Implement WeakHashMap API
Java Program to Find Inverse of a Matrix
Java Program to Solve any Linear Equation in One Variable
Spring RestTemplate Request/Response Logging
Java Program to Generate Date Between Given Range
Java Program to Compute Cross Product of Two Vectors
Jackson Ignore Properties on Marshalling
Java Program to Implement Queue using Two Stacks
How to Get the Last Element of a Stream in Java?
Convert char to String in Java
Retrieve User Information in Spring Security
Hamcrest Collections Cookbook
Java Program to Implement the MD5 Algorithm
Java Program to Implement VList
Filtering a Stream of Optionals in Java
Spring’s RequestBody and ResponseBody Annotations
OAuth2 for a Spring REST API – Handle the Refresh Token in AngularJS
What is Thread-Safety and How to Achieve it?
Java Program to Implement Hopcroft Algorithm
Java Program to Check whether Graph is a Bipartite using DFS
The Basics of Java Security
Java Program to Represent Graph Using 2D Arrays
Java Program to Implement Efficient O(log n) Fibonacci generator
Java Program to Check if any Graph is Possible to be Constructed for a Given Degree Sequence
Introduction to the Java ArrayDeque
Java Program to Implement Circular Doubly Linked List
More Jackson Annotations
Adding Parameters to HttpClient Requests
Java – Write an InputStream to a File
Guava – Join and Split Collections