This is a java program to generate a random graph by selecting random number of edges. One important thing to note here is, that we need to decide minimum and maximum number of nodes such that all edges get accommodated. Minimum number of vertices is positive solution to n(n-1) = 2e, where e is number of edges and maximum number of vertices is e+1.
Here is the source code of the Java Program to Construct a Random Graph by the Method of Random Edge Selection. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
import java.util.HashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Random;
public class Random_Edges_Graph2
{
private Map<Integer, List<Integer>> adjacencyList;
public Random_Edges_Graph2(int v)
{
adjacencyList = new HashMap<Integer, List<Integer>>();
for (int i = 1; i <= v; i++)
adjacencyList.put(i, new LinkedList<Integer>());
}
public void setEdge(int to, int from)
{
if (to > adjacencyList.size() || from > adjacencyList.size())
System.out.println("The vertices does not exists");
List<Integer> sls = adjacencyList.get(to);
sls.add(from);
List<Integer> dls = adjacencyList.get(from);
dls.add(to);
}
public List<Integer> getEdge(int to)
{
if (to > adjacencyList.size())
{
System.out.println("The vertices does not exists");
return null;
}
return adjacencyList.get(to);
}
public static void main(String args[])
{
System.out.println("Random Graph Generation");
Random random = new Random();
int e = Math.abs(random.nextInt(21 - 1) + 1);
try
{
int minV = (int) Math.ceil((1 + Math.sqrt(1 + 8 * e)) / 2);
int maxV = e + 1;
int v = Math.abs(random.nextInt(maxV - minV) + minV);
System.out.println("Random graph has "+v+" vertices");
System.out.println("Random graph has "+e+" edges");
Random_Edges_Graph2 reg = new Random_Edges_Graph2(v);
int count = 1, to, from;
while (count <= e)
{
to = Math.abs(random.nextInt(v + 1 - 1) + 1);
from = Math.abs(random.nextInt(v + 1 - 1) + 1);
reg.setEdge(to, from);
count++;
}
System.out
.println("The Adjacency List Representation of the random graph is: ");
for (int i = 1; i <= v; i++)
{
System.out.print(i + " -> ");
List<Integer> edgeList = reg.getEdge(i);
if (edgeList.size() == 0)
System.out.print("null");
else
{
for (int j = 1;; j++)
{
if (j != edgeList.size())
System.out.print(edgeList.get(j - 1) + " -> ");
else {
System.out.print(edgeList.get(j - 1));
break;
}
}
}
System.out.println();
}
}
catch (Exception E)
{
System.out.println("Something went wrong");
}
}
}
Output:
$ javac Random_Edges_Graph2.java $ java Random_Edges_Graph2 Random Graph Generation Random graph has 4 vertices Random graph has 5 edges The Adjacency List Representation of the random graph is: 1 -> 4 2 -> 3 -> 3 -> 4 3 -> 3 -> 3 -> 2 -> 2 4 -> 1 -> 2
Related posts:
Spring Boot - Quick Start
Java Program to Find Strongly Connected Components in Graphs
Spring Boot - Scheduling
Java Program to Implement String Matching Using Vectors
Vector trong Java
Service Registration with Eureka
Overflow and Underflow in Java
HttpClient 4 Cookbook
Converting a Stack Trace to a String in Java
Java Program to Perform Insertion in a 2 Dimension K-D Tree
Java Program to Find MST (Minimum Spanning Tree) using Kruskal’s Algorithm
Spring Cloud AWS – Messaging Support
Java Program to Implement JobStateReasons API
Java Program to Implement Leftist Heap
Mệnh đề if-else trong java
Apache Commons Collections MapUtils
Guide to @ConfigurationProperties in Spring Boot
Format ZonedDateTime to String
Từ khóa static và final trong java
How to Return 404 with Spring WebFlux
Adding Shutdown Hooks for JVM Applications
Spring Boot - Admin Client
Java Program to Represent Graph Using Linked List
Handle EML file with JavaMail
Map Serialization and Deserialization with Jackson
Hướng dẫn Java Design Pattern – Bridge
Java Program to Implement the MD5 Algorithm
Java Program to Generate Randomized Sequence of Given Range of Numbers
Netflix Archaius with Various Database Configurations
Guide to Java 8 groupingBy Collector
Marker Interface trong Java
Java Program to Implement the Edmond’s Algorithm for Maximum Cardinality Matching