This is java program to implement 0/1 Knapsack problem. The knapsack problem or rucksack problem is a problem in combinatorial optimization: Given a set of items, each with a mass and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible. It derives its name from the problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most valuable items.
Here is the source code of the Java Program to Solve the 0-1 Knapsack Problem. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a sample program to implement a 0/1 knapsack algorithm
import java.util.Scanner;
public class Zero_One_Knapsack
{
public void solve(int[] wt, int[] val, int W, int N)
{
int NEGATIVE_INFINITY = Integer.MIN_VALUE;
int[][] m = new int[N + 1][W + 1];
int[][] sol = new int[N + 1][W + 1];
for (int i = 1; i <= N; i++)
{
for (int j = 0; j <= W; j++)
{
int m1 = m[i - 1][j];
int m2 = NEGATIVE_INFINITY;
if (j >= wt[i])
m2 = m[i - 1][j - wt[i]] + val[i];
m[i][j] = Math.max(m1, m2);
sol[i][j] = m2 > m1 ? 1 : 0;
}
}
int[] selected = new int[N + 1];
for (int n = N, w = W; n > 0; n--)
{
if (sol[n][w] != 0)
{
selected[n] = 1;
w = w - wt[n];
}
else
selected[n] = 0;
}
System.out.print("\nItems with weight ");
for (int i = 1; i < N + 1; i++)
if (selected[i] == 1)
System.out.print(val[i] +" ");
System.out.println("are selected by knapsack algorithm.");
}
public static void main (String[] args)
{
Scanner scan = new Scanner(System.in);
Zero_One_Knapsack ks = new Zero_One_Knapsack();
System.out.println("Enter number of elements ");
int n = scan.nextInt();
int[] wt = new int[n + 1];
int[] val = new int[n + 1];
System.out.println("Enter weight for "+ n +" elements");
for (int i = 1; i <= n; i++)
wt[i] = scan.nextInt();
System.out.println("Enter value for "+ n +" elements");
for (int i = 1; i <= n; i++)
val[i] = scan.nextInt();
System.out.println("Enter knapsack weight ");
int W = scan.nextInt();
ks.solve(wt, val, W, n);
scan.close();
}
}
Output:
$ javac Zero_One_Knapsack.java $ java Zero_One_Knapsack Enter number of elements 5 Enter weight for 5 elements 01 56 42 78 12 Enter value for 5 elements 50 30 20 10 50 Enter knapsack weight 150 Items with weight 50 30 20 50 are selected by knapsack algorithm.
Related posts:
Guava Collections Cookbook
Hướng dẫn sử dụng luồng vào ra ký tự trong Java
Spring Autowiring of Generic Types
Integer Constant Pool trong Java
Java Program to Implement LinkedBlockingQueue API
Transactions with Spring and JPA
Java Program to Implement Quick Hull Algorithm to Find Convex Hull
Java Program to Implement ConcurrentSkipListMap API
Spring WebClient Filters
New Stream Collectors in Java 9
Send email with authentication
Java Program to Perform Optimal Paranthesization Using Dynamic Programming
Introduction to Spring Cloud CLI
Java Program to Perform String Matching Using String Library
Từ khóa throw và throws trong Java
Converting a List to String in Java
Spring Data JPA @Query
Java Program to Permute All Letters of an Input String
Generating Random Numbers in a Range in Java
Kết hợp Java Reflection và Java Annotations
Using Spring ResponseEntity to Manipulate the HTTP Response
Java Program to Implement Queue using Linked List
Stack Memory and Heap Space in Java
Initialize a HashMap in Java
A Guide to the ViewResolver in Spring MVC
Fixing 401s with CORS Preflights and Spring Security
Marker Interface trong Java
The Difference Between map() and flatMap()
Java Program to Implement Segment Tree
Spring Data JPA Delete and Relationships
Serialize Only Fields that meet a Custom Criteria with Jackson
Java Program to Generate Random Hexadecimal Byte