This is java program to implement 0/1 Knapsack problem. The knapsack problem or rucksack problem is a problem in combinatorial optimization: Given a set of items, each with a mass and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible. It derives its name from the problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most valuable items.
Here is the source code of the Java Program to Solve the 0-1 Knapsack Problem. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a sample program to implement a 0/1 knapsack algorithm
import java.util.Scanner;
public class Zero_One_Knapsack
{
public void solve(int[] wt, int[] val, int W, int N)
{
int NEGATIVE_INFINITY = Integer.MIN_VALUE;
int[][] m = new int[N + 1][W + 1];
int[][] sol = new int[N + 1][W + 1];
for (int i = 1; i <= N; i++)
{
for (int j = 0; j <= W; j++)
{
int m1 = m[i - 1][j];
int m2 = NEGATIVE_INFINITY;
if (j >= wt[i])
m2 = m[i - 1][j - wt[i]] + val[i];
m[i][j] = Math.max(m1, m2);
sol[i][j] = m2 > m1 ? 1 : 0;
}
}
int[] selected = new int[N + 1];
for (int n = N, w = W; n > 0; n--)
{
if (sol[n][w] != 0)
{
selected[n] = 1;
w = w - wt[n];
}
else
selected[n] = 0;
}
System.out.print("\nItems with weight ");
for (int i = 1; i < N + 1; i++)
if (selected[i] == 1)
System.out.print(val[i] +" ");
System.out.println("are selected by knapsack algorithm.");
}
public static void main (String[] args)
{
Scanner scan = new Scanner(System.in);
Zero_One_Knapsack ks = new Zero_One_Knapsack();
System.out.println("Enter number of elements ");
int n = scan.nextInt();
int[] wt = new int[n + 1];
int[] val = new int[n + 1];
System.out.println("Enter weight for "+ n +" elements");
for (int i = 1; i <= n; i++)
wt[i] = scan.nextInt();
System.out.println("Enter value for "+ n +" elements");
for (int i = 1; i <= n; i++)
val[i] = scan.nextInt();
System.out.println("Enter knapsack weight ");
int W = scan.nextInt();
ks.solve(wt, val, W, n);
scan.close();
}
}
Output:
$ javac Zero_One_Knapsack.java $ java Zero_One_Knapsack Enter number of elements 5 Enter weight for 5 elements 01 56 42 78 12 Enter value for 5 elements 50 30 20 10 50 Enter knapsack weight 150 Items with weight 50 30 20 50 are selected by knapsack algorithm.
Related posts:
Introduction to the Java ArrayDeque
Java Program to Implement Best-First Search
Guide to CopyOnWriteArrayList
Java Program to Implement Max-Flow Min-Cut Theorem
Servlet 3 Async Support with Spring MVC and Spring Security
Inheritance with Jackson
How to Read a File in Java
Java Program to Construct an Expression Tree for an Infix Expression
Java Program to Perform LU Decomposition of any Matrix
Java Program to Find the Connected Components of an UnDirected Graph
Java Program to Implement Skip List
Java Program to Create a Random Linear Extension for a DAG
Java Program to Find the Longest Path in a DAG
Java Program to Find the Minimum Element of a Rotated Sorted Array using Binary Search approach
Java Program to Generate Random Numbers Using Middle Square Method
Java Program to Implement Doubly Linked List
Java Program to Find Nearest Neighbor for Static Data Set
Java Program to Implement Bresenham Line Algorithm
Chuyển đổi từ HashMap sang ArrayList
Mệnh đề if-else trong java
Rate Limiting in Spring Cloud Netflix Zuul
Generating Random Dates in Java
A Guide to ConcurrentMap
Java Program to Implement AttributeList API
Java Program to Check if a Given Binary Tree is an AVL Tree or Not
Comparing Long Values in Java
Java Program to Implement Bubble Sort
Deploy a Spring Boot App to Azure
Guava CharMatcher
Java 14 Record Keyword
Java Program to Construct a Random Graph by the Method of Random Edge Selection
How to Kill a Java Thread