This Java program is to check whether graph is Biconnected. In graph theory, a biconnected graph is a connected and “nonseparable” graph, meaning that if any vertex were to be removed, the graph will remain connected. Therefore a biconnected graph has no articulation vertices.
Here is the source code of the Java program to check whether graph is biconnected. The Java program is successfully compiled and run on a Linux system. The program output is also shown below.
import java.util.HashSet; import java.util.InputMismatchException; import java.util.LinkedList; import java.util.Queue; import java.util.Scanner; import java.util.Set; import java.util.Stack; public class BiconnectedGraph { private Queue<Integer> queue; private Stack<Integer> stack; private int numberOfNodes; private Set<Integer> articulationPoints; private int[] parent; private int[] visited; private int[][] adjacencyMatrix; public BiconnectedGraph(int numberOfNodes) { queue = new LinkedList<Integer>(); this.numberOfNodes = numberOfNodes; this.stack = new Stack<Integer>(); this.articulationPoints = new HashSet<Integer>(); this.parent = new int[numberOfNodes + 1]; this.visited = new int[numberOfNodes + 1]; this.adjacencyMatrix = new int[numberOfNodes + 1][numberOfNodes + 1]; } private boolean bfs(int adjacency_matrix[][], int source) { boolean connected = true; int number_of_nodes = adjacency_matrix.length - 1; int[] visited = new int[number_of_nodes + 1]; int i, element; visited = 1; queue.add(source); while (!queue.isEmpty()) { element = queue.remove(); i = element; while (i <= number_of_nodes) { if (adjacency_matrix[element][i] == 1 && visited[i] == 0) { queue.add(i); visited[i] = 1; } i++; } } for (int vertex = 1; vertex <= number_of_nodes; vertex++) { if (visited[vertex] == 1) { continue; }else { connected = false; break; } } return connected; } private int numberOfArticulationPoint(int adjacencyMatrix[][], int source) { int children = 0; int element, destination; stack.push(source); visited = 1; for (int sourceVertex = 1; sourceVertex <= numberOfNodes; sourceVertex++) { for (int destinationVertex = 1; destinationVertex <= numberOfNodes; destinationVertex++) { this.adjacencyMatrix[sourceVertex][destinationVertex] = adjacencyMatrix[sourceVertex][destinationVertex]; } } while (!stack.isEmpty()) { element = stack.peek(); destination = element; while (destination <= numberOfNodes) { if (this.adjacencyMatrix[element][destination] == 1 && visited[destination] == 0) { stack.push(destination); visited[destination] = 1; parent[destination] = element; if (element == source) { children++; } if (!isLeaf(this.adjacencyMatrix, destination)) { if (children > 1) { articulationPoints.add(source); } if(isArticulationPoint(this.adjacencyMatrix, destination)) { articulationPoints.add(destination); } } element = destination; destination = 1; continue; } destination++; } stack.pop(); } return articulationPoints.size(); } public boolean isArticulationPoint(int adjacencyMatrix[][], int root) { int explored[] = new int[numberOfNodes + 1]; Stack<Integer> stack = new Stack<Integer>(); stack.push(root); int element = 0,destination = 0; while(!stack.isEmpty()) { element = stack.peek(); destination = 1; while (destination <= numberOfNodes) { if ( element != root) { if (adjacencyMatrix[element][destination] == 1 && visited[destination] == 1) { if (this.stack.contains(destination)) { if (destination <= parent[root]) { return false; } return true; } } } if ((adjacencyMatrix[element][destination] == 1 && explored[destination] == 0 ) && visited[destination] == 0) { stack.push(destination); explored[destination] = 1; adjacencyMatrix[destination][element] = 0; element = destination; destination = 1; continue; } destination++; } stack.pop(); } return true; } private boolean isLeaf(int adjacencyMatrix[][], int node) { boolean isLeaf = true; for (int vertex = 1; vertex <= numberOfNodes; vertex++) { if (adjacencyMatrix[node][vertex] == 1 && visited[vertex] == 1) { isLeaf = true; }else if (adjacencyMatrix[node][vertex] == 1 && visited[vertex] == 0) { isLeaf = false; break; } } return isLeaf; } public boolean isBiconnected(int adjacencyMatrix[][], int source) { boolean biconnected = false; if (bfs(adjacencyMatrix, source) && numberOfArticulationPoint(adjacencyMatrix, source) == 0) { biconnected = true; } return biconnected; } public static void main(String... arg) { int number_of_nodes, source; Scanner scanner = null; try { System.out.println("Enter the number of nodes in the graph"); scanner = new Scanner(System.in); number_of_nodes = scanner.nextInt(); int adjacency_matrix[][] = new int[number_of_nodes + 1][number_of_nodes + 1]; System.out.println("Enter the adjacency matrix"); for (int i = 1; i <= number_of_nodes; i++) for (int j = 1; j <= number_of_nodes; j++) adjacency_matrix[i][j] = scanner.nextInt(); System.out.println("Enter the source for the graph"); source = scanner.nextInt(); BiconnectedGraph biconnectedGraph = new BiconnectedGraph(number_of_nodes); if (biconnectedGraph.isBiconnected(adjacency_matrix, source)) { System.out.println("The Given Graph is BiConnected"); }else { System.out.println("The Given Graph is Not BiConnected"); } } catch (InputMismatchException inputMismatch) { System.out.println("Wrong Input format"); } scanner.close(); } }
$javac BiConnectedGraph.java $java BiConnectedGraph Enter the number of nodes in the graph 5 Enter the adjacency matrix 0 1 1 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 1 1 0 Enter the source for the graph 1 The Given Graph is BiConnected
Related posts:
Java Program to Implement ScapeGoat Tree
Refactoring Design Pattern với tính năng mới trong Java 8
New Features in Java 10
Difference Between Wait and Sleep in Java
Java Program to Compute Determinant of a Matrix
Java Program to Implement Hash Trie
Get the workstation name or IP
Spring Boot - Bootstrapping
Java Perform to a 2D FFT Inplace Given a Complex 2D Array
Jackson – Decide What Fields Get Serialized/Deserialized
Java Program to Implement the Alexander Bogomolny’s UnOrdered Permutation Algorithm for Elements Fro...
Java Program to Perform Cryptography Using Transposition Technique
Spring Data JPA Delete and Relationships
Java Program to Construct an Expression Tree for an Postfix Expression
Java Program to Generate Random Numbers Using Multiply with Carry Method
Java Program to Implement Binomial Tree
Java Program to Create the Prufer Code for a Tree
Guide to PriorityBlockingQueue in Java
Java – Write to File
Custom HTTP Header with the HttpClient
ThreadPoolTaskExecutor corePoolSize vs. maxPoolSize
Filtering a Stream of Optionals in Java
Intro to the Jackson ObjectMapper
What is Thread-Safety and How to Achieve it?
Spring REST with a Zuul Proxy
Introduction to Apache Commons Text
Split a String in Java
Java Program to Implement Rolling Hash
Java Program to Perform Stooge Sort
Guide to the Java Queue Interface
Object cloning trong java
4 tính chất của lập trình hướng đối tượng trong Java