This Java program is to check whether graph is Biconnected. In graph theory, a biconnected graph is a connected and “nonseparable” graph, meaning that if any vertex were to be removed, the graph will remain connected. Therefore a biconnected graph has no articulation vertices.
Here is the source code of the Java program to check whether graph is biconnected. The Java program is successfully compiled and run on a Linux system. The program output is also shown below.
import java.util.HashSet; import java.util.InputMismatchException; import java.util.LinkedList; import java.util.Queue; import java.util.Scanner; import java.util.Set; import java.util.Stack; public class BiconnectedGraph { private Queue<Integer> queue; private Stack<Integer> stack; private int numberOfNodes; private Set<Integer> articulationPoints; private int[] parent; private int[] visited; private int[][] adjacencyMatrix; public BiconnectedGraph(int numberOfNodes) { queue = new LinkedList<Integer>(); this.numberOfNodes = numberOfNodes; this.stack = new Stack<Integer>(); this.articulationPoints = new HashSet<Integer>(); this.parent = new int[numberOfNodes + 1]; this.visited = new int[numberOfNodes + 1]; this.adjacencyMatrix = new int[numberOfNodes + 1][numberOfNodes + 1]; } private boolean bfs(int adjacency_matrix[][], int source) { boolean connected = true; int number_of_nodes = adjacency_matrix.length - 1; int[] visited = new int[number_of_nodes + 1]; int i, element; visited = 1; queue.add(source); while (!queue.isEmpty()) { element = queue.remove(); i = element; while (i <= number_of_nodes) { if (adjacency_matrix[element][i] == 1 && visited[i] == 0) { queue.add(i); visited[i] = 1; } i++; } } for (int vertex = 1; vertex <= number_of_nodes; vertex++) { if (visited[vertex] == 1) { continue; }else { connected = false; break; } } return connected; } private int numberOfArticulationPoint(int adjacencyMatrix[][], int source) { int children = 0; int element, destination; stack.push(source); visited = 1; for (int sourceVertex = 1; sourceVertex <= numberOfNodes; sourceVertex++) { for (int destinationVertex = 1; destinationVertex <= numberOfNodes; destinationVertex++) { this.adjacencyMatrix[sourceVertex][destinationVertex] = adjacencyMatrix[sourceVertex][destinationVertex]; } } while (!stack.isEmpty()) { element = stack.peek(); destination = element; while (destination <= numberOfNodes) { if (this.adjacencyMatrix[element][destination] == 1 && visited[destination] == 0) { stack.push(destination); visited[destination] = 1; parent[destination] = element; if (element == source) { children++; } if (!isLeaf(this.adjacencyMatrix, destination)) { if (children > 1) { articulationPoints.add(source); } if(isArticulationPoint(this.adjacencyMatrix, destination)) { articulationPoints.add(destination); } } element = destination; destination = 1; continue; } destination++; } stack.pop(); } return articulationPoints.size(); } public boolean isArticulationPoint(int adjacencyMatrix[][], int root) { int explored[] = new int[numberOfNodes + 1]; Stack<Integer> stack = new Stack<Integer>(); stack.push(root); int element = 0,destination = 0; while(!stack.isEmpty()) { element = stack.peek(); destination = 1; while (destination <= numberOfNodes) { if ( element != root) { if (adjacencyMatrix[element][destination] == 1 && visited[destination] == 1) { if (this.stack.contains(destination)) { if (destination <= parent[root]) { return false; } return true; } } } if ((adjacencyMatrix[element][destination] == 1 && explored[destination] == 0 ) && visited[destination] == 0) { stack.push(destination); explored[destination] = 1; adjacencyMatrix[destination][element] = 0; element = destination; destination = 1; continue; } destination++; } stack.pop(); } return true; } private boolean isLeaf(int adjacencyMatrix[][], int node) { boolean isLeaf = true; for (int vertex = 1; vertex <= numberOfNodes; vertex++) { if (adjacencyMatrix[node][vertex] == 1 && visited[vertex] == 1) { isLeaf = true; }else if (adjacencyMatrix[node][vertex] == 1 && visited[vertex] == 0) { isLeaf = false; break; } } return isLeaf; } public boolean isBiconnected(int adjacencyMatrix[][], int source) { boolean biconnected = false; if (bfs(adjacencyMatrix, source) && numberOfArticulationPoint(adjacencyMatrix, source) == 0) { biconnected = true; } return biconnected; } public static void main(String... arg) { int number_of_nodes, source; Scanner scanner = null; try { System.out.println("Enter the number of nodes in the graph"); scanner = new Scanner(System.in); number_of_nodes = scanner.nextInt(); int adjacency_matrix[][] = new int[number_of_nodes + 1][number_of_nodes + 1]; System.out.println("Enter the adjacency matrix"); for (int i = 1; i <= number_of_nodes; i++) for (int j = 1; j <= number_of_nodes; j++) adjacency_matrix[i][j] = scanner.nextInt(); System.out.println("Enter the source for the graph"); source = scanner.nextInt(); BiconnectedGraph biconnectedGraph = new BiconnectedGraph(number_of_nodes); if (biconnectedGraph.isBiconnected(adjacency_matrix, source)) { System.out.println("The Given Graph is BiConnected"); }else { System.out.println("The Given Graph is Not BiConnected"); } } catch (InputMismatchException inputMismatch) { System.out.println("Wrong Input format"); } scanner.close(); } }
$javac BiConnectedGraph.java $java BiConnectedGraph Enter the number of nodes in the graph 5 Enter the adjacency matrix 0 1 1 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 1 1 0 Enter the source for the graph 1 The Given Graph is BiConnected
Related posts:
Tránh lỗi ConcurrentModificationException trong Java như thế nào?
Configuring a DataSource Programmatically in Spring Boot
Java Program to Check Whether an Input Binary Tree is the Sub Tree of the Binary Tree
New Features in Java 15
Java – Rename or Move a File
Chuyển đổi từ HashMap sang ArrayList
Java Program to Implement the Bin Packing Algorithm
Java Program to Implement Word Wrap Problem
Tips for dealing with HTTP-related problems
Removing all duplicates from a List in Java
ClassNotFoundException vs NoClassDefFoundError
Hướng dẫn sử dụng Lớp FilePermission trong java
Java Program to Find kth Smallest Element by the Method of Partitioning the Array
Circular Dependencies in Spring
Converting between an Array and a List in Java
Finding Max/Min of a List or Collection
Check if there is mail waiting
Configure a RestTemplate with RestTemplateBuilder
Java Program to Implement Sieve Of Sundaram
Java Program to Implement Euclid GCD Algorithm
An Intro to Spring Cloud Security
Introduction to the Java NIO2 File API
Java Program to Solve TSP Using Minimum Spanning Trees
Serverless Functions with Spring Cloud Function
Giới thiệu java.io.tmpdir
Spring Boot - CORS Support
Hướng dẫn Java Design Pattern – DAO
Java Program to Implement Knight’s Tour Problem
ArrayList trong java
How to Return 404 with Spring WebFlux
Java Program to Implement Horner Algorithm
Check If a File or Directory Exists in Java