This is a java program to check whether graph is DAG. In mathematics and computer science, a directed acyclic graph (DAG Listeni/’dæg/), is a directed graph with no directed cycles. That is, it is formed by a collection of vertices and directed edges, each edge connecting one vertex to another, such that there is no way to start at some vertex v and follow a sequence of edges that eventually loops back to v again.
Here is the source code of the Java Program to Check Whether Graph is DAG. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
package com.maixuanviet.hardgraph;
import java.util.HashMap;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Scanner;
class GraphLinkedList
{
private Map<Integer, List<Integer>> adjacencyList;
public GraphLinkedList(int v)
{
adjacencyList = new HashMap<Integer, List<Integer>>();
for (int i = 1; i <= v; i++)
adjacencyList.put(i, new LinkedList<Integer>());
}
public void setEdge(int from, int to)
{
if (to > adjacencyList.size() || from > adjacencyList.size())
System.out.println("The vertices does not exists");
/*
* List<Integer> sls = adjacencyList.get(to);
* sls.add(from);
*/
List<Integer> dls = adjacencyList.get(from);
dls.add(to);
}
public List<Integer> getEdge(int to)
{
if (to > adjacencyList.size())
{
System.out.println("The vertices does not exists");
return null;
}
return adjacencyList.get(to);
}
public boolean checkDAG()
{
Integer count = 0;
Iterator<Integer> iteratorI = this.adjacencyList.keySet().iterator();
Integer size = this.adjacencyList.size() - 1;
while (iteratorI.hasNext())
{
Integer i = iteratorI.next();
List<Integer> adjList = this.adjacencyList.get(i);
if (count == size)
{
return true;
}
if (adjList.size() == 0)
{
count++;
System.out.println("Target Node - " + i);
Iterator<Integer> iteratorJ = this.adjacencyList.keySet()
.iterator();
while (iteratorJ.hasNext())
{
Integer j = iteratorJ.next();
List<Integer> li = this.adjacencyList.get(j);
if (li.contains(i))
{
li.remove(i);
System.out.println("Deleting edge between target node "
+ i + " - " + j + " ");
}
}
this.adjacencyList.remove(i);
iteratorI = this.adjacencyList.keySet().iterator();
}
}
return false;
}
public void printGraph()
{
System.out.println("The Graph is: ");
for (int i = 1; i <= this.adjacencyList.size(); i++)
{
List<Integer> edgeList = this.getEdge(i);
if (edgeList.size() != 0)
{
System.out.print(i);
for (int j = 0; j < edgeList.size(); j++)
{
System.out.print(" -> " + edgeList.get(j));
}
System.out.println();
}
}
}
}
public class CheckDAG
{
public static void main(String args[])
{
int v, e, count = 1, to, from;
Scanner sc = new Scanner(System.in);
GraphLinkedList glist;
try
{
System.out.println("Enter the number of vertices: ");
v = sc.nextInt();
System.out.println("Enter the number of edges: ");
e = sc.nextInt();
glist = new GraphLinkedList(v);
System.out.println("Enter the edges in the graph : <from> <to>");
while (count <= e)
{
to = sc.nextInt();
from = sc.nextInt();
glist.setEdge(to, from);
count++;
}
glist.printGraph();
System.out
.println("--Processing graph to check whether it is DAG--");
if (glist.checkDAG())
{
System.out
.println("Result: \nGiven graph is DAG (Directed Acyclic Graph).");
}
else
{
System.out
.println("Result: \nGiven graph is not DAG (Directed Acyclic Graph).");
}
}
catch (Exception E)
{
System.out
.println("You are trying to access empty adjacency list of a node.");
}
sc.close();
}
}
Output:
$ javac CheckDAG.java $ java CheckDAG Enter the number of vertices: 6 Enter the number of edges: 7 Enter the edges in the graph : <from> <to> 1 2 2 3 2 4 4 5 4 6 5 6 6 3 The Graph is: 1 -> 2 2 -> 3 -> 4 4 -> 5 -> 6 5 -> 6 6 -> 3 --Processing graph to check whether it is DAG-- Target Node - 3 Deleting edge between target node 3 - 2 Deleting edge between target node 3 - 6 Target Node - 6 Deleting edge between target node 6 - 4 Deleting edge between target node 6 - 5 Target Node - 5 Deleting edge between target node 5 - 4 Target Node - 4 Deleting edge between target node 4 - 2 Target Node - 2 Deleting edge between target node 2 - 1 Result: Given graph is DAG (Directed Acyclic Graph). Enter the number of vertices: 6 Enter the number of edges: 7 Enter the edges in the graph : <from> <to> 1 2 2 3 2 4 4 5 5 6 6 4 6 3 The Graph is: 1 -> 2 2 -> 3 -> 4 4 -> 5 5 -> 6 6 -> 4 -> 3 --Processing graph to check whether it is DAG-- Target Node - 3 Deleting edge between target node 3 - 2 Deleting edge between target node 3 - 6 Result: Given graph is not DAG (Directed Acyclic Graph).
Related posts:
Spring Boot - Service Components
Java Program to Perform Complex Number Multiplication
Java Program to Check whether Directed Graph is Connected using DFS
Giới thiệu SOAP UI và thực hiện test Web Service
Java Program to Print the Kind of Rotation the AVL Tree is Undergoing
Java Program to Find Inverse of a Matrix
Static Content in Spring WebFlux
How To Serialize and Deserialize Enums with Jackson
Tránh lỗi ConcurrentModificationException trong Java như thế nào?
Java Perform to a 2D FFT Inplace Given a Complex 2D Array
Java Program to Show the Duality Transformation of Line and Point
How to Delay Code Execution in Java
Java Program to Implement Find all Cross Edges in a Graph
Exploring the Spring 5 WebFlux URL Matching
Guide to Guava Table
Java Program to Implement Max-Flow Min-Cut Theorem
Java Program to Implement AA Tree
Spring Data JPA and Null Parameters
Java Program to Find Maximum Element in an Array using Binary Search
Ways to Iterate Over a List in Java
Java Program to Perform Preorder Recursive Traversal of a Given Binary Tree
Spring Security Authentication Provider
Logging a Reactive Sequence
An Intro to Spring Cloud Zookeeper
Inheritance and Composition (Is-a vs Has-a relationship) in Java
Injecting Prototype Beans into a Singleton Instance in Spring
Immutable Map Implementations in Java
Tìm hiểu về xác thực và phân quyền trong ứng dụng
Java Streams vs Vavr Streams
Java Program to Implement Pollard Rho Algorithm
Checking for Empty or Blank Strings in Java
Java Program to Implement the Monoalphabetic Cypher