This is a java program to implement Hungarian Algorithm for Bipartite Matching. The Hungarian method is a combinatorial optimization algorithm that solves the assignment problem in polynomial time and which anticipated later primal-dual methods.
Here is the source code of the Java Program to Implement the Hungarian Algorithm for Bipartite Matching. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
package com.maixuanviet.graph;
import java.util.Arrays;
import java.util.Scanner;
public class HungarianBipartiteMatching
{
private final double[][] costMatrix;
private final int rows, cols, dim;
private final double[] labelByWorker, labelByJob;
private final int[] minSlackWorkerByJob;
private final double[] minSlackValueByJob;
private final int[] matchJobByWorker, matchWorkerByJob;
private final int[] parentWorkerByCommittedJob;
private final boolean[] committedWorkers;
public HungarianBipartiteMatching(double[][] costMatrix)
{
this.dim = Math.max(costMatrix.length, costMatrix[0].length);
this.rows = costMatrix.length;
this.cols = costMatrix[0].length;
this.costMatrix = new double[this.dim][this.dim];
for (int w = 0; w < this.dim; w++)
{
if (w < costMatrix.length)
{
if (costMatrix[w].length != this.cols)
{
throw new IllegalArgumentException("Irregular cost matrix");
}
this.costMatrix[w] = Arrays.copyOf(costMatrix[w], this.dim);
}
else
{
this.costMatrix[w] = new double[this.dim];
}
}
labelByWorker = new double[this.dim];
labelByJob = new double[this.dim];
minSlackWorkerByJob = new int[this.dim];
minSlackValueByJob = new double[this.dim];
committedWorkers = new boolean[this.dim];
parentWorkerByCommittedJob = new int[this.dim];
matchJobByWorker = new int[this.dim];
Arrays.fill(matchJobByWorker, -1);
matchWorkerByJob = new int[this.dim];
Arrays.fill(matchWorkerByJob, -1);
}
protected void computeInitialFeasibleSolution()
{
for (int j = 0; j < dim; j++)
{
labelByJob[j] = Double.POSITIVE_INFINITY;
}
for (int w = 0; w < dim; w++)
{
for (int j = 0; j < dim; j++)
{
if (costMatrix[w][j] < labelByJob[j])
{
labelByJob[j] = costMatrix[w][j];
}
}
}
}
public int[] execute()
{
/*
* Heuristics to improve performance: Reduce rows and columns by their
* smallest element, compute an initial non-zero dual feasible solution
* and
* create a greedy matching from workers to jobs of the cost matrix.
*/
reduce();
computeInitialFeasibleSolution();
greedyMatch();
int w = fetchUnmatchedWorker();
while (w < dim)
{
initializePhase(w);
executePhase();
w = fetchUnmatchedWorker();
}
int[] result = Arrays.copyOf(matchJobByWorker, rows);
for (w = 0; w < result.length; w++)
{
if (result[w] >= cols)
{
result[w] = -1;
}
}
return result;
}
protected void executePhase()
{
while (true)
{
int minSlackWorker = -1, minSlackJob = -1;
double minSlackValue = Double.POSITIVE_INFINITY;
for (int j = 0; j < dim; j++)
{
if (parentWorkerByCommittedJob[j] == -1)
{
if (minSlackValueByJob[j] < minSlackValue)
{
minSlackValue = minSlackValueByJob[j];
minSlackWorker = minSlackWorkerByJob[j];
minSlackJob = j;
}
}
}
if (minSlackValue > 0)
{
updateLabeling(minSlackValue);
}
parentWorkerByCommittedJob[minSlackJob] = minSlackWorker;
if (matchWorkerByJob[minSlackJob] == -1)
{
/*
* An augmenting path has been found.
*/
int committedJob = minSlackJob;
int parentWorker = parentWorkerByCommittedJob[committedJob];
while (true)
{
int temp = matchJobByWorker[parentWorker];
match(parentWorker, committedJob);
committedJob = temp;
if (committedJob == -1)
{
break;
}
parentWorker = parentWorkerByCommittedJob[committedJob];
}
return;
}
else
{
/*
* Update slack values since we increased the size of the
* committed
* workers set.
*/
int worker = matchWorkerByJob[minSlackJob];
committedWorkers[worker] = true;
for (int j = 0; j < dim; j++)
{
if (parentWorkerByCommittedJob[j] == -1)
{
double slack = costMatrix[worker][j]
- labelByWorker[worker] - labelByJob[j];
if (minSlackValueByJob[j] > slack)
{
minSlackValueByJob[j] = slack;
minSlackWorkerByJob[j] = worker;
}
}
}
}
}
}
protected int fetchUnmatchedWorker()
{
int w;
for (w = 0; w < dim; w++)
{
if (matchJobByWorker[w] == -1)
{
break;
}
}
return w;
}
protected void greedyMatch()
{
for (int w = 0; w < dim; w++)
{
for (int j = 0; j < dim; j++)
{
if (matchJobByWorker[w] == -1
&& matchWorkerByJob[j] == -1
&& costMatrix[w][j] - labelByWorker[w] - labelByJob[j] == 0)
{
match(w, j);
}
}
}
}
protected void initializePhase(int w)
{
Arrays.fill(committedWorkers, false);
Arrays.fill(parentWorkerByCommittedJob, -1);
committedWorkers[w] = true;
for (int j = 0; j < dim; j++)
{
minSlackValueByJob[j] = costMatrix[w][j] - labelByWorker[w]
- labelByJob[j];
minSlackWorkerByJob[j] = w;
}
}
protected void match(int w, int j)
{
matchJobByWorker[w] = j;
matchWorkerByJob[j] = w;
}
protected void reduce()
{
for (int w = 0; w < dim; w++)
{
double min = Double.POSITIVE_INFINITY;
for (int j = 0; j < dim; j++)
{
if (costMatrix[w][j] < min)
{
min = costMatrix[w][j];
}
}
for (int j = 0; j < dim; j++)
{
costMatrix[w][j] -= min;
}
}
double[] min = new double[dim];
for (int j = 0; j < dim; j++)
{
min[j] = Double.POSITIVE_INFINITY;
}
for (int w = 0; w < dim; w++)
{
for (int j = 0; j < dim; j++)
{
if (costMatrix[w][j] < min[j])
{
min[j] = costMatrix[w][j];
}
}
}
for (int w = 0; w < dim; w++)
{
for (int j = 0; j < dim; j++)
{
costMatrix[w][j] -= min[j];
}
}
}
protected void updateLabeling(double slack)
{
for (int w = 0; w < dim; w++)
{
if (committedWorkers[w])
{
labelByWorker[w] += slack;
}
}
for (int j = 0; j < dim; j++)
{
if (parentWorkerByCommittedJob[j] != -1)
{
labelByJob[j] -= slack;
}
else
{
minSlackValueByJob[j] -= slack;
}
}
}
public static void main(String[] args)
{
Scanner sc = new Scanner(System.in);
System.out.println("Enter the dimentsions of the cost matrix: ");
System.out.println("r:");
int r = sc.nextInt();
System.out.println("c:");
int c = sc.nextInt();
System.out.println("Enter the cost matrix: <row wise>");
double[][] cost = new double[r];
for (int i = 0; i < r; i++)
{
for (int j = 0; j < c; j++)
{
cost[i][j] = sc.nextDouble();
}
}
HungarianBipartiteMatching hbm = new HungarianBipartiteMatching(cost);
int[] result = hbm.execute();
System.out.println("Bipartite Matching: " + Arrays.toString(result));
sc.close();
}
}
Output:
$ javac HungarianBipartiteMatching.java $ java HungarianBipartiteMatching Enter the dimentsions of the cost matrix: r: 4 c: 4 Enter the cost matrix: <row wise> 82 83 69 92 77 37 49 92 11 69 5 86 8 9 98 23 Bipartite Matching: [2, 1, 0, 3] //worker 1 should perform job 3, worker 2 should perform job 2 and so on...
Related posts:
Lấy ngày giờ hiện tại trong Java
Spring Security Basic Authentication
A Guide to TreeMap in Java
Java Program to Implement Bresenham Line Algorithm
Java Program to Implement Nth Root Algorithm
Java Program to Find Shortest Path Between All Vertices Using Floyd-Warshall’s Algorithm
Spring Boot Gradle Plugin
Explain about URL and HTTPS protocol
Java Program to Implement Attribute API
Exploring the New Spring Cloud Gateway
Java Program to Implement the linear congruential generator for Pseudo Random Number Generation
Java Program to Use the Bellman-Ford Algorithm to Find the Shortest Path
Removing all Nulls from a List in Java
Java – InputStream to Reader
Java Program to Implement Naor-Reingold Pseudo Random Function
Spring Security 5 for Reactive Applications
Java Stream Filter with Lambda Expression
Java Program to Apply DFS to Perform the Topological Sorting of a Directed Acyclic Graph
The Basics of Java Security
Java Program to Perform Quick Sort on Large Number of Elements
Java Timer
Spring Security Login Page with React
Spring MVC Setup with Kotlin
Guide to java.util.Formatter
Adding Parameters to HttpClient Requests
Java Program to Implement D-ary-Heap
JUnit5 @RunWith
Spring Cloud – Adding Angular
Java IO vs NIO
Java Program to Compute the Volume of a Tetrahedron Using Determinants
Java – Reader to InputStream
Java Program to Implement Multi-Threaded Version of Binary Search Tree