This is a java program to implement Hungarian Algorithm for Bipartite Matching. The Hungarian method is a combinatorial optimization algorithm that solves the assignment problem in polynomial time and which anticipated later primal-dual methods.
Here is the source code of the Java Program to Implement the Hungarian Algorithm for Bipartite Matching. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
package com.maixuanviet.graph; import java.util.Arrays; import java.util.Scanner; public class HungarianBipartiteMatching { private final double[][] costMatrix; private final int rows, cols, dim; private final double[] labelByWorker, labelByJob; private final int[] minSlackWorkerByJob; private final double[] minSlackValueByJob; private final int[] matchJobByWorker, matchWorkerByJob; private final int[] parentWorkerByCommittedJob; private final boolean[] committedWorkers; public HungarianBipartiteMatching(double[][] costMatrix) { this.dim = Math.max(costMatrix.length, costMatrix[0].length); this.rows = costMatrix.length; this.cols = costMatrix[0].length; this.costMatrix = new double[this.dim][this.dim]; for (int w = 0; w < this.dim; w++) { if (w < costMatrix.length) { if (costMatrix[w].length != this.cols) { throw new IllegalArgumentException("Irregular cost matrix"); } this.costMatrix[w] = Arrays.copyOf(costMatrix[w], this.dim); } else { this.costMatrix[w] = new double[this.dim]; } } labelByWorker = new double[this.dim]; labelByJob = new double[this.dim]; minSlackWorkerByJob = new int[this.dim]; minSlackValueByJob = new double[this.dim]; committedWorkers = new boolean[this.dim]; parentWorkerByCommittedJob = new int[this.dim]; matchJobByWorker = new int[this.dim]; Arrays.fill(matchJobByWorker, -1); matchWorkerByJob = new int[this.dim]; Arrays.fill(matchWorkerByJob, -1); } protected void computeInitialFeasibleSolution() { for (int j = 0; j < dim; j++) { labelByJob[j] = Double.POSITIVE_INFINITY; } for (int w = 0; w < dim; w++) { for (int j = 0; j < dim; j++) { if (costMatrix[w][j] < labelByJob[j]) { labelByJob[j] = costMatrix[w][j]; } } } } public int[] execute() { /* * Heuristics to improve performance: Reduce rows and columns by their * smallest element, compute an initial non-zero dual feasible solution * and * create a greedy matching from workers to jobs of the cost matrix. */ reduce(); computeInitialFeasibleSolution(); greedyMatch(); int w = fetchUnmatchedWorker(); while (w < dim) { initializePhase(w); executePhase(); w = fetchUnmatchedWorker(); } int[] result = Arrays.copyOf(matchJobByWorker, rows); for (w = 0; w < result.length; w++) { if (result[w] >= cols) { result[w] = -1; } } return result; } protected void executePhase() { while (true) { int minSlackWorker = -1, minSlackJob = -1; double minSlackValue = Double.POSITIVE_INFINITY; for (int j = 0; j < dim; j++) { if (parentWorkerByCommittedJob[j] == -1) { if (minSlackValueByJob[j] < minSlackValue) { minSlackValue = minSlackValueByJob[j]; minSlackWorker = minSlackWorkerByJob[j]; minSlackJob = j; } } } if (minSlackValue > 0) { updateLabeling(minSlackValue); } parentWorkerByCommittedJob[minSlackJob] = minSlackWorker; if (matchWorkerByJob[minSlackJob] == -1) { /* * An augmenting path has been found. */ int committedJob = minSlackJob; int parentWorker = parentWorkerByCommittedJob[committedJob]; while (true) { int temp = matchJobByWorker[parentWorker]; match(parentWorker, committedJob); committedJob = temp; if (committedJob == -1) { break; } parentWorker = parentWorkerByCommittedJob[committedJob]; } return; } else { /* * Update slack values since we increased the size of the * committed * workers set. */ int worker = matchWorkerByJob[minSlackJob]; committedWorkers[worker] = true; for (int j = 0; j < dim; j++) { if (parentWorkerByCommittedJob[j] == -1) { double slack = costMatrix[worker][j] - labelByWorker[worker] - labelByJob[j]; if (minSlackValueByJob[j] > slack) { minSlackValueByJob[j] = slack; minSlackWorkerByJob[j] = worker; } } } } } } protected int fetchUnmatchedWorker() { int w; for (w = 0; w < dim; w++) { if (matchJobByWorker[w] == -1) { break; } } return w; } protected void greedyMatch() { for (int w = 0; w < dim; w++) { for (int j = 0; j < dim; j++) { if (matchJobByWorker[w] == -1 && matchWorkerByJob[j] == -1 && costMatrix[w][j] - labelByWorker[w] - labelByJob[j] == 0) { match(w, j); } } } } protected void initializePhase(int w) { Arrays.fill(committedWorkers, false); Arrays.fill(parentWorkerByCommittedJob, -1); committedWorkers[w] = true; for (int j = 0; j < dim; j++) { minSlackValueByJob[j] = costMatrix[w][j] - labelByWorker[w] - labelByJob[j]; minSlackWorkerByJob[j] = w; } } protected void match(int w, int j) { matchJobByWorker[w] = j; matchWorkerByJob[j] = w; } protected void reduce() { for (int w = 0; w < dim; w++) { double min = Double.POSITIVE_INFINITY; for (int j = 0; j < dim; j++) { if (costMatrix[w][j] < min) { min = costMatrix[w][j]; } } for (int j = 0; j < dim; j++) { costMatrix[w][j] -= min; } } double[] min = new double[dim]; for (int j = 0; j < dim; j++) { min[j] = Double.POSITIVE_INFINITY; } for (int w = 0; w < dim; w++) { for (int j = 0; j < dim; j++) { if (costMatrix[w][j] < min[j]) { min[j] = costMatrix[w][j]; } } } for (int w = 0; w < dim; w++) { for (int j = 0; j < dim; j++) { costMatrix[w][j] -= min[j]; } } } protected void updateLabeling(double slack) { for (int w = 0; w < dim; w++) { if (committedWorkers[w]) { labelByWorker[w] += slack; } } for (int j = 0; j < dim; j++) { if (parentWorkerByCommittedJob[j] != -1) { labelByJob[j] -= slack; } else { minSlackValueByJob[j] -= slack; } } } public static void main(String[] args) { Scanner sc = new Scanner(System.in); System.out.println("Enter the dimentsions of the cost matrix: "); System.out.println("r:"); int r = sc.nextInt(); System.out.println("c:"); int c = sc.nextInt(); System.out.println("Enter the cost matrix: <row wise>"); double[][] cost = new double[r]; for (int i = 0; i < r; i++) { for (int j = 0; j < c; j++) { cost[i][j] = sc.nextDouble(); } } HungarianBipartiteMatching hbm = new HungarianBipartiteMatching(cost); int[] result = hbm.execute(); System.out.println("Bipartite Matching: " + Arrays.toString(result)); sc.close(); } }
Output:
$ javac HungarianBipartiteMatching.java $ java HungarianBipartiteMatching Enter the dimentsions of the cost matrix: r: 4 c: 4 Enter the cost matrix: <row wise> 82 83 69 92 77 37 49 92 11 69 5 86 8 9 98 23 Bipartite Matching: [2, 1, 0, 3] //worker 1 should perform job 3, worker 2 should perform job 2 and so on...
Related posts:
HttpClient Timeout
Java – Random Long, Float, Integer and Double
Spring Boot Gradle Plugin
Java Program to Generate a Sequence of N Characters for a Given Specific Case
New Features in Java 11
Java 8 Collectors toMap
OAuth 2.0 Resource Server With Spring Security 5
Guide to Java 8 groupingBy Collector
Java Program to Implement PrinterStateReasons API
Java Program to Search for an Element in a Binary Search Tree
Practical Java Examples of the Big O Notation
Reversing a Linked List in Java
Java Program to Implement HashSet API
Working With Maps Using Streams
RestTemplate Post Request with JSON
Spring Data MongoDB – Indexes, Annotations and Converters
Spring Boot - Cloud Configuration Server
Spring @RequestParam Annotation
Biến trong java
Implementing a Binary Tree in Java
Object cloning trong java
Java Program to Find Transitive Closure of a Graph
Handle EML file with JavaMail
Java Program to Perform the Shaker Sort
Java Program to Implement Solovay Strassen Primality Test Algorithm
Java Program to Find Shortest Path Between All Vertices Using Floyd-Warshall’s Algorithm
wait() and notify() Methods in Java
Java Program to Implement the Vigenere Cypher
Getting Started with GraphQL and Spring Boot
Câu lệnh điều khiển vòng lặp trong Java (break, continue)
Spring’s RequestBody and ResponseBody Annotations
Java CyclicBarrier vs CountDownLatch