This is a java program to implement Hungarian Algorithm for Bipartite Matching. The Hungarian method is a combinatorial optimization algorithm that solves the assignment problem in polynomial time and which anticipated later primal-dual methods.
Here is the source code of the Java Program to Implement the Hungarian Algorithm for Bipartite Matching. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
package com.maixuanviet.graph; import java.util.Arrays; import java.util.Scanner; public class HungarianBipartiteMatching { private final double[][] costMatrix; private final int rows, cols, dim; private final double[] labelByWorker, labelByJob; private final int[] minSlackWorkerByJob; private final double[] minSlackValueByJob; private final int[] matchJobByWorker, matchWorkerByJob; private final int[] parentWorkerByCommittedJob; private final boolean[] committedWorkers; public HungarianBipartiteMatching(double[][] costMatrix) { this.dim = Math.max(costMatrix.length, costMatrix[0].length); this.rows = costMatrix.length; this.cols = costMatrix[0].length; this.costMatrix = new double[this.dim][this.dim]; for (int w = 0; w < this.dim; w++) { if (w < costMatrix.length) { if (costMatrix[w].length != this.cols) { throw new IllegalArgumentException("Irregular cost matrix"); } this.costMatrix[w] = Arrays.copyOf(costMatrix[w], this.dim); } else { this.costMatrix[w] = new double[this.dim]; } } labelByWorker = new double[this.dim]; labelByJob = new double[this.dim]; minSlackWorkerByJob = new int[this.dim]; minSlackValueByJob = new double[this.dim]; committedWorkers = new boolean[this.dim]; parentWorkerByCommittedJob = new int[this.dim]; matchJobByWorker = new int[this.dim]; Arrays.fill(matchJobByWorker, -1); matchWorkerByJob = new int[this.dim]; Arrays.fill(matchWorkerByJob, -1); } protected void computeInitialFeasibleSolution() { for (int j = 0; j < dim; j++) { labelByJob[j] = Double.POSITIVE_INFINITY; } for (int w = 0; w < dim; w++) { for (int j = 0; j < dim; j++) { if (costMatrix[w][j] < labelByJob[j]) { labelByJob[j] = costMatrix[w][j]; } } } } public int[] execute() { /* * Heuristics to improve performance: Reduce rows and columns by their * smallest element, compute an initial non-zero dual feasible solution * and * create a greedy matching from workers to jobs of the cost matrix. */ reduce(); computeInitialFeasibleSolution(); greedyMatch(); int w = fetchUnmatchedWorker(); while (w < dim) { initializePhase(w); executePhase(); w = fetchUnmatchedWorker(); } int[] result = Arrays.copyOf(matchJobByWorker, rows); for (w = 0; w < result.length; w++) { if (result[w] >= cols) { result[w] = -1; } } return result; } protected void executePhase() { while (true) { int minSlackWorker = -1, minSlackJob = -1; double minSlackValue = Double.POSITIVE_INFINITY; for (int j = 0; j < dim; j++) { if (parentWorkerByCommittedJob[j] == -1) { if (minSlackValueByJob[j] < minSlackValue) { minSlackValue = minSlackValueByJob[j]; minSlackWorker = minSlackWorkerByJob[j]; minSlackJob = j; } } } if (minSlackValue > 0) { updateLabeling(minSlackValue); } parentWorkerByCommittedJob[minSlackJob] = minSlackWorker; if (matchWorkerByJob[minSlackJob] == -1) { /* * An augmenting path has been found. */ int committedJob = minSlackJob; int parentWorker = parentWorkerByCommittedJob[committedJob]; while (true) { int temp = matchJobByWorker[parentWorker]; match(parentWorker, committedJob); committedJob = temp; if (committedJob == -1) { break; } parentWorker = parentWorkerByCommittedJob[committedJob]; } return; } else { /* * Update slack values since we increased the size of the * committed * workers set. */ int worker = matchWorkerByJob[minSlackJob]; committedWorkers[worker] = true; for (int j = 0; j < dim; j++) { if (parentWorkerByCommittedJob[j] == -1) { double slack = costMatrix[worker][j] - labelByWorker[worker] - labelByJob[j]; if (minSlackValueByJob[j] > slack) { minSlackValueByJob[j] = slack; minSlackWorkerByJob[j] = worker; } } } } } } protected int fetchUnmatchedWorker() { int w; for (w = 0; w < dim; w++) { if (matchJobByWorker[w] == -1) { break; } } return w; } protected void greedyMatch() { for (int w = 0; w < dim; w++) { for (int j = 0; j < dim; j++) { if (matchJobByWorker[w] == -1 && matchWorkerByJob[j] == -1 && costMatrix[w][j] - labelByWorker[w] - labelByJob[j] == 0) { match(w, j); } } } } protected void initializePhase(int w) { Arrays.fill(committedWorkers, false); Arrays.fill(parentWorkerByCommittedJob, -1); committedWorkers[w] = true; for (int j = 0; j < dim; j++) { minSlackValueByJob[j] = costMatrix[w][j] - labelByWorker[w] - labelByJob[j]; minSlackWorkerByJob[j] = w; } } protected void match(int w, int j) { matchJobByWorker[w] = j; matchWorkerByJob[j] = w; } protected void reduce() { for (int w = 0; w < dim; w++) { double min = Double.POSITIVE_INFINITY; for (int j = 0; j < dim; j++) { if (costMatrix[w][j] < min) { min = costMatrix[w][j]; } } for (int j = 0; j < dim; j++) { costMatrix[w][j] -= min; } } double[] min = new double[dim]; for (int j = 0; j < dim; j++) { min[j] = Double.POSITIVE_INFINITY; } for (int w = 0; w < dim; w++) { for (int j = 0; j < dim; j++) { if (costMatrix[w][j] < min[j]) { min[j] = costMatrix[w][j]; } } } for (int w = 0; w < dim; w++) { for (int j = 0; j < dim; j++) { costMatrix[w][j] -= min[j]; } } } protected void updateLabeling(double slack) { for (int w = 0; w < dim; w++) { if (committedWorkers[w]) { labelByWorker[w] += slack; } } for (int j = 0; j < dim; j++) { if (parentWorkerByCommittedJob[j] != -1) { labelByJob[j] -= slack; } else { minSlackValueByJob[j] -= slack; } } } public static void main(String[] args) { Scanner sc = new Scanner(System.in); System.out.println("Enter the dimentsions of the cost matrix: "); System.out.println("r:"); int r = sc.nextInt(); System.out.println("c:"); int c = sc.nextInt(); System.out.println("Enter the cost matrix: <row wise>"); double[][] cost = new double[r]; for (int i = 0; i < r; i++) { for (int j = 0; j < c; j++) { cost[i][j] = sc.nextDouble(); } } HungarianBipartiteMatching hbm = new HungarianBipartiteMatching(cost); int[] result = hbm.execute(); System.out.println("Bipartite Matching: " + Arrays.toString(result)); sc.close(); } }
Output:
$ javac HungarianBipartiteMatching.java $ java HungarianBipartiteMatching Enter the dimentsions of the cost matrix: r: 4 c: 4 Enter the cost matrix: <row wise> 82 83 69 92 77 37 49 92 11 69 5 86 8 9 98 23 Bipartite Matching: [2, 1, 0, 3] //worker 1 should perform job 3, worker 2 should perform job 2 and so on...
Related posts:
Guide to Spring @Autowired
Send email with JavaMail
Introduction to Liquibase Rollback
New Stream Collectors in Java 9
Spring Data MongoDB – Indexes, Annotations and Converters
HttpClient Timeout
Guide to Java Instrumentation
Java Program to Implement Shell Sort
Java Program to Implement Repeated Squaring Algorithm
Tổng quan về ngôn ngữ lập trình java
Guide to java.util.concurrent.Future
Check if there is mail waiting
Immutable ArrayList in Java
Lập trình đa luồng với Callable và Future trong Java
Spring MVC + Thymeleaf 3.0: New Features
Inject Parameters into JUnit Jupiter Unit Tests
Java Program to Implement ConcurrentLinkedQueue API
Java Program to Check if any Graph is Possible to be Constructed for a Given Degree Sequence
Hướng dẫn sử dụng lớp Console trong java
Spring Data MongoDB Transactions
Spring 5 Functional Bean Registration
Java Web Services – JAX-WS – SOAP
Java Program to Implement Circular Doubly Linked List
Consumer trong Java 8
Getting Started with Stream Processing with Spring Cloud Data Flow
Checking for Empty or Blank Strings in Java
@Lookup Annotation in Spring
Java Program to Implement the Program Used in grep/egrep/fgrep
How to Manually Authenticate User with Spring Security
A Guide to BitSet in Java
Java Program to Implement CountMinSketch
Hướng dẫn sử dụng biểu thức chính quy (Regular Expression) trong Java