This is a java program to implement Edmond’s Algorithm for maximum cardinality matching. In graph theory, a branch of mathematics, Edmonds’ algorithm or Chu–Liu/Edmonds’ algorithm is an algorithm for finding a maximum or minimum optimum branchings. This is similar to the minimum spanning tree problem which concerns undirected graphs. However, when nodes are connected by weighted edges that are directed, a minimum spanning tree algorithm cannot be used.
Here is the source code of the Java Program to Implement the Edmond’s Algorithm for Maximum Cardinality Matching. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
package com.maixuanviet.graph; import java.util.ArrayList; import java.util.Arrays; import java.util.List; import java.util.Scanner; public class EdmondsMaximumCardinalityMatching { static int lca(int[] match, int[] base, int[] p, int a, int b) { boolean[] used = new boolean[match.length]; while (true) { a = base[a]; used[a] = true; if (match[a] == -1) break; a = p[match[a]]; } while (true) { b = base[b]; if (used[b]) return b; b = p[match[b]]; } } static void markPath(int[] match, int[] base, boolean[] blossom, int[] p, int v, int b, int children) { for (; base[v] != b; v = p[match[v]]) { blossom[base[v]] = blossom[base[match[v]]] = true; p[v] = children; children = match[v]; } } static int findPath(List<Integer>[] graph, int[] match, int[] p, int root) { int n = graph.length; boolean[] used = new boolean[n]; Arrays.fill(p, -1); int[] base = new int[n]; for (int i = 0; i < n; ++i) base[i] = i; used[root] = true; int qh = 0; int qt = 0; int[] q = new int[n]; q[qt++] = root; while (qh < qt) { int v = q[qh++]; for (int to : graph[v]) { if (base[v] == base[to] || match[v] == to) continue; if (to == root || match[to] != -1 && p[match[to]] != -1) { int curbase = lca(match, base, p, v, to); boolean[] blossom = new boolean[n]; markPath(match, base, blossom, p, v, curbase, to); markPath(match, base, blossom, p, to, curbase, v); for (int i = 0; i < n; ++i) if (blossom[base[i]]) { base[i] = curbase; if (!used[i]) { used[i] = true; q[qt++] = i; } } } else if (p[to] == -1) { p[to] = v; if (match[to] == -1) return to; to = match[to]; used[to] = true; q[qt++] = to; } } } return -1; } public static int maxMatching(List<Integer>[] graph) { int n = graph.length; int[] match = new int[n]; Arrays.fill(match, -1); int[] p = new int[n]; for (int i = 0; i < n; ++i) { if (match[i] == -1) { int v = findPath(graph, match, p, i); while (v != -1) { int pv = p[v]; int ppv = match[pv]; match[v] = pv; match[pv] = v; v = ppv; } } } int matches = 0; for (int i = 0; i < n; ++i) if (match[i] != -1) ++matches; return matches / 2; } @SuppressWarnings("unchecked") public static void main(String[] args) { Scanner sc = new Scanner(System.in); System.out.println("Enter the number of vertices: "); int v = sc.nextInt(); System.out.println("Enter the number of edges: "); int e = sc.nextInt(); List<Integer>[] g = new List[v]; for (int i = 0; i < v; i++) { g[i] = new ArrayList<Integer>(); } System.out.println("Enter all the edges: <from> <to>"); for (int i = 0; i < e; i++) { g[sc.nextInt()].add(sc.nextInt()); } System.out.println("Maximum matching for the given graph is: " + maxMatching(g)); sc.close(); } }
Output:
$ javac EdmondsMaximumCardinalityMatching.java $ java EdmondsMaximumCardinalityMatching Enter the number of vertices: 6 Enter the number of edges: 7 Enter all the edges: <from> <to> 0 1 1 2 1 3 3 4 4 5 5 3 5 2 Maximum matching for the given graph is: 3
Related posts:
Spring REST API with Protocol Buffers
Spring Boot - OAuth2 with JWT
Spring Boot - Internationalization
Java Program to Perform Polygon Containment Test
Generic Constructors in Java
Java Program to Implement Treap
Practical Java Examples of the Big O Notation
Case-Insensitive String Matching in Java
Java Program to Implement Singly Linked List
Spring Security Logout
Converting String to Stream of chars
Java Program to Implement Lloyd’s Algorithm
Iterating over Enum Values in Java
Apache Tiles Integration with Spring MVC
Giới thiệu Aspect Oriented Programming (AOP)
Introduction to the Java ArrayDeque
Java Program to Implement Double Ended Queue
Java Program to Implement Sorting of Less than 100 Numbers in O(n) Complexity
Java Program to Implement Gauss Jordan Elimination
Java Switch Statement
Java Program to Perform Deletion in a BST
Hướng dẫn Java Design Pattern – Mediator
Java Program to Generate Random Hexadecimal Byte
Java Program to Implement AVL Tree
Spring MVC and the @ModelAttribute Annotation
Programmatic Transaction Management in Spring
Java Program to Implement the Binary Counting Method to Generate Subsets of a Set
Java Program to Generate Random Numbers Using Probability Distribution Function
How to Implement Caching using Adonis.js 5
Redirect to Different Pages after Login with Spring Security
Jackson vs Gson
Spring WebClient Requests with Parameters