This is a java program to implement Edmond’s Algorithm for maximum cardinality matching. In graph theory, a branch of mathematics, Edmonds’ algorithm or Chu–Liu/Edmonds’ algorithm is an algorithm for finding a maximum or minimum optimum branchings. This is similar to the minimum spanning tree problem which concerns undirected graphs. However, when nodes are connected by weighted edges that are directed, a minimum spanning tree algorithm cannot be used.
Here is the source code of the Java Program to Implement the Edmond’s Algorithm for Maximum Cardinality Matching. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
package com.maixuanviet.graph;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Scanner;
public class EdmondsMaximumCardinalityMatching
{
static int lca(int[] match, int[] base, int[] p, int a, int b)
{
boolean[] used = new boolean[match.length];
while (true)
{
a = base[a];
used[a] = true;
if (match[a] == -1)
break;
a = p[match[a]];
}
while (true)
{
b = base[b];
if (used[b])
return b;
b = p[match[b]];
}
}
static void markPath(int[] match, int[] base, boolean[] blossom, int[] p,
int v, int b, int children)
{
for (; base[v] != b; v = p[match[v]])
{
blossom[base[v]] = blossom[base[match[v]]] = true;
p[v] = children;
children = match[v];
}
}
static int findPath(List<Integer>[] graph, int[] match, int[] p, int root)
{
int n = graph.length;
boolean[] used = new boolean[n];
Arrays.fill(p, -1);
int[] base = new int[n];
for (int i = 0; i < n; ++i)
base[i] = i;
used[root] = true;
int qh = 0;
int qt = 0;
int[] q = new int[n];
q[qt++] = root;
while (qh < qt)
{
int v = q[qh++];
for (int to : graph[v])
{
if (base[v] == base[to] || match[v] == to)
continue;
if (to == root || match[to] != -1 && p[match[to]] != -1)
{
int curbase = lca(match, base, p, v, to);
boolean[] blossom = new boolean[n];
markPath(match, base, blossom, p, v, curbase, to);
markPath(match, base, blossom, p, to, curbase, v);
for (int i = 0; i < n; ++i)
if (blossom[base[i]])
{
base[i] = curbase;
if (!used[i])
{
used[i] = true;
q[qt++] = i;
}
}
}
else if (p[to] == -1)
{
p[to] = v;
if (match[to] == -1)
return to;
to = match[to];
used[to] = true;
q[qt++] = to;
}
}
}
return -1;
}
public static int maxMatching(List<Integer>[] graph)
{
int n = graph.length;
int[] match = new int[n];
Arrays.fill(match, -1);
int[] p = new int[n];
for (int i = 0; i < n; ++i)
{
if (match[i] == -1)
{
int v = findPath(graph, match, p, i);
while (v != -1)
{
int pv = p[v];
int ppv = match[pv];
match[v] = pv;
match[pv] = v;
v = ppv;
}
}
}
int matches = 0;
for (int i = 0; i < n; ++i)
if (match[i] != -1)
++matches;
return matches / 2;
}
@SuppressWarnings("unchecked")
public static void main(String[] args)
{
Scanner sc = new Scanner(System.in);
System.out.println("Enter the number of vertices: ");
int v = sc.nextInt();
System.out.println("Enter the number of edges: ");
int e = sc.nextInt();
List<Integer>[] g = new List[v];
for (int i = 0; i < v; i++)
{
g[i] = new ArrayList<Integer>();
}
System.out.println("Enter all the edges: <from> <to>");
for (int i = 0; i < e; i++)
{
g[sc.nextInt()].add(sc.nextInt());
}
System.out.println("Maximum matching for the given graph is: "
+ maxMatching(g));
sc.close();
}
}
Output:
$ javac EdmondsMaximumCardinalityMatching.java $ java EdmondsMaximumCardinalityMatching Enter the number of vertices: 6 Enter the number of edges: 7 Enter all the edges: <from> <to> 0 1 1 2 1 3 3 4 4 5 5 3 5 2 Maximum matching for the given graph is: 3
Related posts:
Java Switch Statement
Generic Constructors in Java
A Guide to Java SynchronousQueue
Java Program to Implement Unrolled Linked List
Spring Security Custom AuthenticationFailureHandler
Testing in Spring Boot
Java Program to Generate Random Numbers Using Middle Square Method
Working with Kotlin and JPA
Java Program to Find SSSP (Single Source Shortest Path) in DAG (Directed Acyclic Graphs)
An Intro to Spring Cloud Zookeeper
Java Program to Implement Aho-Corasick Algorithm for String Matching
Java Program to Perform Postorder Non-Recursive Traversal of a Given Binary Tree
Hamcrest Collections Cookbook
JPA/Hibernate Persistence Context
Show Hibernate/JPA SQL Statements from Spring Boot
SOAP Web service: Upload và Download file sử dụng MTOM trong JAX-WS
Spring Security 5 for Reactive Applications
Java Program to Find Number of Spanning Trees in a Complete Bipartite Graph
Thực thi nhiều tác vụ cùng lúc như thế nào trong Java?
Spring Boot Actuator
Spring Boot - Web Socket
Hướng dẫn kết nối cơ sở dữ liệu với Java JDBC
Apache Commons Collections BidiMap
How to Read HTTP Headers in Spring REST Controllers
Java Program to Search for an Element in a Binary Search Tree
Simultaneous Spring WebClient Calls
Getting Started with Forms in Spring MVC
Generating Random Dates in Java
Validations for Enum Types
Adding a Newline Character to a String in Java
Java Program to Implement Ternary Tree
Java Program to Implement Sorted Circularly Singly Linked List