This is a Java Program to implement Lloyd’s Algorithm. The LBG-algorithm or Lloyd’s algorithm allows clustering of vectors of any dimension. This is helpful for example for image classification when using the SIFT or SURF algorithms. It might be also useful if you want to cluster a large amount of points on a map.
Here is the source code of the Java Program to Implement Lloyd’s Algorithm. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a java program to implement Lloyd’s Algorithm import java.util.ArrayList; public class GenLloyd { protected double[][] samplePoints; protected double[][] clusterPoints; int[] pointApproxIndices; int pointDimension = 0; protected double epsilon = 0.0005; protected double avgDistortion = 0.0; /** * Create Generalized Lloyd object with an array of sample points */ public GenLloyd(double[][] samplePoints) { this.setSamplePoints(samplePoints); } /** * Return epsilon parameter (accuracy) */ public double getEpsilon() { return epsilon; } /** * Set epsilon parameter (accuracy). Should be a small number 0.0 < epsilon * < 0.1 */ public void setEpsilon(double epsilon) { this.epsilon = epsilon; } /** * Set array of sample points */ public void setSamplePoints(double[][] samplePoints) { if (samplePoints.length > 0) { this.samplePoints = samplePoints; this.pointDimension = samplePoints[0].length; } } /** * Get array of sample points */ public double[][] getSamplePoints() { return samplePoints; } /** * Get calculated cluster points. <numClusters> cluster points will be * calculated and returned */ public double[][] getClusterPoints(int numClusters) { this.calcClusters(numClusters); return clusterPoints; } protected void calcClusters(int numClusters) { // initialize with first cluster clusterPoints = new double[1][pointDimension]; double[] newClusterPoint = initializeClusterPoint(samplePoints); clusterPoints[0] = newClusterPoint; if (numClusters > 1) { // calculate initial average distortion avgDistortion = 0.0; for (double[] samplePoint : samplePoints) { avgDistortion += calcDist(samplePoint, newClusterPoint); } avgDistortion /= (double) (samplePoints.length * pointDimension); // set up array of point approximization indices pointApproxIndices = new int[samplePoints.length]; // split the clusters int i = 1; do { i = splitClusters(); } while (i < numClusters); } } protected int splitClusters() { int newClusterPointSize = 2; if (clusterPoints.length != 1) { newClusterPointSize = clusterPoints.length * 2; } // split clusters double[][] newClusterPoints = new double[newClusterPointSize][pointDimension]; int newClusterPointIdx = 0; for (double[] clusterPoint : clusterPoints) { newClusterPoints[newClusterPointIdx] = createNewClusterPoint( clusterPoint, -1); newClusterPoints[newClusterPointIdx + 1] = createNewClusterPoint( clusterPoint, +1); newClusterPointIdx += 2; } clusterPoints = newClusterPoints; // iterate to approximate cluster points // int iteration = 0; double curAvgDistortion = 0.0; do { curAvgDistortion = avgDistortion; // find the min values for (int pointIdx = 0; pointIdx < samplePoints.length; pointIdx++) { double minDist = Double.MAX_VALUE; for (int clusterPointIdx = 0; clusterPointIdx < clusterPoints.length; clusterPointIdx++) { double newMinDist = calcDist(samplePoints[pointIdx], clusterPoints[clusterPointIdx]); if (newMinDist < minDist) { minDist = newMinDist; pointApproxIndices[pointIdx] = clusterPointIdx; } } } // update codebook for (int clusterPointIdx = 0; clusterPointIdx < clusterPoints.length; clusterPointIdx++) { double[] newClusterPoint = new double[pointDimension]; int num = 0; for (int pointIdx = 0; pointIdx < samplePoints.length; pointIdx++) { if (pointApproxIndices[pointIdx] == clusterPointIdx) { addPointValues(newClusterPoint, samplePoints[pointIdx]); num++; } } if (num > 0) { multiplyPointValues(newClusterPoint, 1.0 / (double) num); clusterPoints[clusterPointIdx] = newClusterPoint; } } // update average distortion avgDistortion = 0.0; for (int pointIdx = 0; pointIdx < samplePoints.length; pointIdx++) { avgDistortion += calcDist(samplePoints[pointIdx], clusterPoints[pointApproxIndices[pointIdx]]); } avgDistortion /= (double) (samplePoints.length * pointDimension); } while (((curAvgDistortion - avgDistortion) / curAvgDistortion) > epsilon); return clusterPoints.length; } protected double[] initializeClusterPoint(double[][] pointsInCluster) { // calculate point sum double[] clusterPoint = new double[pointDimension]; for (int numPoint = 0; numPoint < pointsInCluster.length; numPoint++) { addPointValues(clusterPoint, pointsInCluster[numPoint]); } // calculate average multiplyPointValues(clusterPoint, 1.0 / (double) pointsInCluster.length); return clusterPoint; } protected double[] createNewClusterPoint(double[] clusterPoint, int epsilonFactor) { double[] newClusterPoint = new double[pointDimension]; addPointValues(newClusterPoint, clusterPoint); multiplyPointValues(newClusterPoint, 1.0 + (double) epsilonFactor * epsilon); return newClusterPoint; } protected double calcDist(double[] v1, double[] v2) { double distSum = 0.0; for (int pointIdx = 0; pointIdx < v1.length; pointIdx++) { double absDist = Math.abs(v1[pointIdx] - v2[pointIdx]); distSum += absDist * absDist; } return distSum; } protected void addPointValues(double[] v1, double[] v2) { for (int pointIdx = 0; pointIdx < v1.length; pointIdx++) { v1[pointIdx] += v2[pointIdx]; } } protected void multiplyPointValues(double[] v1, double f) { for (int pointIdx = 0; pointIdx < v1.length; pointIdx++) { v1[pointIdx] *= f; } } public static void main(String[] args) { ArrayList<double[]> points = new ArrayList<double[]>(); // points.add(arrayOf(-1.5, -1.5)); points.add(arrayOf(-1.5, 2.0, 5.0)); points.add(arrayOf(-2.0, -2.0, 0.0)); points.add(arrayOf(1.0, 1.0, 2.0)); points.add(arrayOf(1.5, 1.5, 1.2)); points.add(arrayOf(1.0, 2.0, 5.6)); points.add(arrayOf(1.0, -2.0, -2.0)); points.add(arrayOf(1.0, -3.0, -2.0)); points.add(arrayOf(1.0, -2.5, -4.5)); GenLloyd gl = new GenLloyd(points.toArray(new double[points.size()][2])); double[][] results = gl.getClusterPoints(4); for (double[] point : results) { System.out.println("Cluster " + point[0] + ", " + point[1] + ", " + point[2]); } } private static double[] arrayOf(double x, double y, double z) { double[] a = new double[3]; a[0] = x; a[1] = y; a[2] = z; return a; } }
Output:
$ javac GenLloyd.java $ java GenLloyd Cluster -2.0, -2.0, 0.0 Cluster 1.0, -2.5, -2.833333333333333 Cluster 1.25, 1.25, 1.6 Cluster -0.25, 2.0, 5.3
Related posts:
Spring Boot - Thymeleaf
Java Program to Compute Discrete Fourier Transform Using Naive Approach
Spring MVC Custom Validation
Jackson Annotation Examples
Hướng dẫn sử dụng Java String, StringBuffer và StringBuilder
Java Program to Find MST (Minimum Spanning Tree) using Kruskal’s Algorithm
Java Program to Perform the Shaker Sort
How to use the Spring FactoryBean?
Java Program to Solve Knapsack Problem Using Dynamic Programming
Java Program to Implement Hash Tables Chaining with Binary Trees
Hướng dẫn sử dụng Printing Service trong Java
Hướng dẫn tạo và sử dụng ThreadPool trong Java
Guide to Guava Table
Giới thiệu HATEOAS
Java Program to Generate Random Numbers Using Middle Square Method
Lập trình đa luồng với CompletableFuture trong Java 8
New Features in Java 9
Java Program to Find the Shortest Path Between Two Vertices Using Dijkstra’s Algorithm
Constructor Dependency Injection in Spring
Giới thiệu về Stream API trong Java 8
Java Program to Compute DFT Coefficients Directly
Serve Static Resources with Spring
Concrete Class in Java
Simple Single Sign-On with Spring Security OAuth2
Java Program to Implement the Bin Packing Algorithm
Java Program to Compute Cross Product of Two Vectors
Hướng dẫn Java Design Pattern – Chain of Responsibility
ArrayList trong java
Collection trong java
Java Program to Perform Partition of an Integer in All Possible Ways
Unsatisfied Dependency in Spring
An Introduction to ThreadLocal in Java