This is a Java Program to implement Lloyd’s Algorithm. The LBG-algorithm or Lloyd’s algorithm allows clustering of vectors of any dimension. This is helpful for example for image classification when using the SIFT or SURF algorithms. It might be also useful if you want to cluster a large amount of points on a map.
Here is the source code of the Java Program to Implement Lloyd’s Algorithm. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a java program to implement Lloyd’s Algorithm import java.util.ArrayList; public class GenLloyd { protected double[][] samplePoints; protected double[][] clusterPoints; int[] pointApproxIndices; int pointDimension = 0; protected double epsilon = 0.0005; protected double avgDistortion = 0.0; /** * Create Generalized Lloyd object with an array of sample points */ public GenLloyd(double[][] samplePoints) { this.setSamplePoints(samplePoints); } /** * Return epsilon parameter (accuracy) */ public double getEpsilon() { return epsilon; } /** * Set epsilon parameter (accuracy). Should be a small number 0.0 < epsilon * < 0.1 */ public void setEpsilon(double epsilon) { this.epsilon = epsilon; } /** * Set array of sample points */ public void setSamplePoints(double[][] samplePoints) { if (samplePoints.length > 0) { this.samplePoints = samplePoints; this.pointDimension = samplePoints[0].length; } } /** * Get array of sample points */ public double[][] getSamplePoints() { return samplePoints; } /** * Get calculated cluster points. <numClusters> cluster points will be * calculated and returned */ public double[][] getClusterPoints(int numClusters) { this.calcClusters(numClusters); return clusterPoints; } protected void calcClusters(int numClusters) { // initialize with first cluster clusterPoints = new double[1][pointDimension]; double[] newClusterPoint = initializeClusterPoint(samplePoints); clusterPoints[0] = newClusterPoint; if (numClusters > 1) { // calculate initial average distortion avgDistortion = 0.0; for (double[] samplePoint : samplePoints) { avgDistortion += calcDist(samplePoint, newClusterPoint); } avgDistortion /= (double) (samplePoints.length * pointDimension); // set up array of point approximization indices pointApproxIndices = new int[samplePoints.length]; // split the clusters int i = 1; do { i = splitClusters(); } while (i < numClusters); } } protected int splitClusters() { int newClusterPointSize = 2; if (clusterPoints.length != 1) { newClusterPointSize = clusterPoints.length * 2; } // split clusters double[][] newClusterPoints = new double[newClusterPointSize][pointDimension]; int newClusterPointIdx = 0; for (double[] clusterPoint : clusterPoints) { newClusterPoints[newClusterPointIdx] = createNewClusterPoint( clusterPoint, -1); newClusterPoints[newClusterPointIdx + 1] = createNewClusterPoint( clusterPoint, +1); newClusterPointIdx += 2; } clusterPoints = newClusterPoints; // iterate to approximate cluster points // int iteration = 0; double curAvgDistortion = 0.0; do { curAvgDistortion = avgDistortion; // find the min values for (int pointIdx = 0; pointIdx < samplePoints.length; pointIdx++) { double minDist = Double.MAX_VALUE; for (int clusterPointIdx = 0; clusterPointIdx < clusterPoints.length; clusterPointIdx++) { double newMinDist = calcDist(samplePoints[pointIdx], clusterPoints[clusterPointIdx]); if (newMinDist < minDist) { minDist = newMinDist; pointApproxIndices[pointIdx] = clusterPointIdx; } } } // update codebook for (int clusterPointIdx = 0; clusterPointIdx < clusterPoints.length; clusterPointIdx++) { double[] newClusterPoint = new double[pointDimension]; int num = 0; for (int pointIdx = 0; pointIdx < samplePoints.length; pointIdx++) { if (pointApproxIndices[pointIdx] == clusterPointIdx) { addPointValues(newClusterPoint, samplePoints[pointIdx]); num++; } } if (num > 0) { multiplyPointValues(newClusterPoint, 1.0 / (double) num); clusterPoints[clusterPointIdx] = newClusterPoint; } } // update average distortion avgDistortion = 0.0; for (int pointIdx = 0; pointIdx < samplePoints.length; pointIdx++) { avgDistortion += calcDist(samplePoints[pointIdx], clusterPoints[pointApproxIndices[pointIdx]]); } avgDistortion /= (double) (samplePoints.length * pointDimension); } while (((curAvgDistortion - avgDistortion) / curAvgDistortion) > epsilon); return clusterPoints.length; } protected double[] initializeClusterPoint(double[][] pointsInCluster) { // calculate point sum double[] clusterPoint = new double[pointDimension]; for (int numPoint = 0; numPoint < pointsInCluster.length; numPoint++) { addPointValues(clusterPoint, pointsInCluster[numPoint]); } // calculate average multiplyPointValues(clusterPoint, 1.0 / (double) pointsInCluster.length); return clusterPoint; } protected double[] createNewClusterPoint(double[] clusterPoint, int epsilonFactor) { double[] newClusterPoint = new double[pointDimension]; addPointValues(newClusterPoint, clusterPoint); multiplyPointValues(newClusterPoint, 1.0 + (double) epsilonFactor * epsilon); return newClusterPoint; } protected double calcDist(double[] v1, double[] v2) { double distSum = 0.0; for (int pointIdx = 0; pointIdx < v1.length; pointIdx++) { double absDist = Math.abs(v1[pointIdx] - v2[pointIdx]); distSum += absDist * absDist; } return distSum; } protected void addPointValues(double[] v1, double[] v2) { for (int pointIdx = 0; pointIdx < v1.length; pointIdx++) { v1[pointIdx] += v2[pointIdx]; } } protected void multiplyPointValues(double[] v1, double f) { for (int pointIdx = 0; pointIdx < v1.length; pointIdx++) { v1[pointIdx] *= f; } } public static void main(String[] args) { ArrayList<double[]> points = new ArrayList<double[]>(); // points.add(arrayOf(-1.5, -1.5)); points.add(arrayOf(-1.5, 2.0, 5.0)); points.add(arrayOf(-2.0, -2.0, 0.0)); points.add(arrayOf(1.0, 1.0, 2.0)); points.add(arrayOf(1.5, 1.5, 1.2)); points.add(arrayOf(1.0, 2.0, 5.6)); points.add(arrayOf(1.0, -2.0, -2.0)); points.add(arrayOf(1.0, -3.0, -2.0)); points.add(arrayOf(1.0, -2.5, -4.5)); GenLloyd gl = new GenLloyd(points.toArray(new double[points.size()][2])); double[][] results = gl.getClusterPoints(4); for (double[] point : results) { System.out.println("Cluster " + point[0] + ", " + point[1] + ", " + point[2]); } } private static double[] arrayOf(double x, double y, double z) { double[] a = new double[3]; a[0] = x; a[1] = y; a[2] = z; return a; } }
Output:
$ javac GenLloyd.java $ java GenLloyd Cluster -2.0, -2.0, 0.0 Cluster 1.0, -2.5, -2.833333333333333 Cluster 1.25, 1.25, 1.6 Cluster -0.25, 2.0, 5.3
Related posts:
Spring Boot: Customize the Jackson ObjectMapper
A Guide to System.exit()
Hướng dẫn Java Design Pattern – Template Method
Java Program to Convert a Decimal Number to Binary Number using Stacks
Java Program to Construct a Random Graph by the Method of Random Edge Selection
Java Program to Compute Cross Product of Two Vectors
StringBuilder vs StringBuffer in Java
Java Program to Implement Gauss Seidel Method
Spring’s RequestBody and ResponseBody Annotations
Java Program to Implement the linear congruential generator for Pseudo Random Number Generation
New Features in Java 14
Java – Get Random Item/Element From a List
Java Program to Implement PriorityQueue API
The SpringJUnitConfig and SpringJUnitWebConfig Annotations in Spring 5
Spring Boot - Eureka Server
Spring Cloud AWS – Messaging Support
Intro to Spring Boot Starters
A Guide to Iterator in Java
Introduction to the Java NIO2 File API
An Introduction to ThreadLocal in Java
Java Program to Describe the Representation of Graph using Incidence Matrix
An Intro to Spring Cloud Vault
Reactive WebSockets with Spring 5
Semaphore trong Java
Comparing Objects in Java
Java Program to Implement Sorted Circularly Singly Linked List
Java Program to Implement Meldable Heap
Guide to java.util.concurrent.Locks
Java Program to Implement a Binary Search Algorithm for a Specific Search Sequence
Java Program to Implement the Edmond’s Algorithm for Maximum Cardinality Matching
Java Program to Implement Stack
Java Program to add two large numbers using Linked List