This is a Java Program to implement Lloyd’s Algorithm. The LBG-algorithm or Lloyd’s algorithm allows clustering of vectors of any dimension. This is helpful for example for image classification when using the SIFT or SURF algorithms. It might be also useful if you want to cluster a large amount of points on a map.
Here is the source code of the Java Program to Implement Lloyd’s Algorithm. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a java program to implement Lloyd’s Algorithm import java.util.ArrayList; public class GenLloyd { protected double[][] samplePoints; protected double[][] clusterPoints; int[] pointApproxIndices; int pointDimension = 0; protected double epsilon = 0.0005; protected double avgDistortion = 0.0; /** * Create Generalized Lloyd object with an array of sample points */ public GenLloyd(double[][] samplePoints) { this.setSamplePoints(samplePoints); } /** * Return epsilon parameter (accuracy) */ public double getEpsilon() { return epsilon; } /** * Set epsilon parameter (accuracy). Should be a small number 0.0 < epsilon * < 0.1 */ public void setEpsilon(double epsilon) { this.epsilon = epsilon; } /** * Set array of sample points */ public void setSamplePoints(double[][] samplePoints) { if (samplePoints.length > 0) { this.samplePoints = samplePoints; this.pointDimension = samplePoints[0].length; } } /** * Get array of sample points */ public double[][] getSamplePoints() { return samplePoints; } /** * Get calculated cluster points. <numClusters> cluster points will be * calculated and returned */ public double[][] getClusterPoints(int numClusters) { this.calcClusters(numClusters); return clusterPoints; } protected void calcClusters(int numClusters) { // initialize with first cluster clusterPoints = new double[1][pointDimension]; double[] newClusterPoint = initializeClusterPoint(samplePoints); clusterPoints[0] = newClusterPoint; if (numClusters > 1) { // calculate initial average distortion avgDistortion = 0.0; for (double[] samplePoint : samplePoints) { avgDistortion += calcDist(samplePoint, newClusterPoint); } avgDistortion /= (double) (samplePoints.length * pointDimension); // set up array of point approximization indices pointApproxIndices = new int[samplePoints.length]; // split the clusters int i = 1; do { i = splitClusters(); } while (i < numClusters); } } protected int splitClusters() { int newClusterPointSize = 2; if (clusterPoints.length != 1) { newClusterPointSize = clusterPoints.length * 2; } // split clusters double[][] newClusterPoints = new double[newClusterPointSize][pointDimension]; int newClusterPointIdx = 0; for (double[] clusterPoint : clusterPoints) { newClusterPoints[newClusterPointIdx] = createNewClusterPoint( clusterPoint, -1); newClusterPoints[newClusterPointIdx + 1] = createNewClusterPoint( clusterPoint, +1); newClusterPointIdx += 2; } clusterPoints = newClusterPoints; // iterate to approximate cluster points // int iteration = 0; double curAvgDistortion = 0.0; do { curAvgDistortion = avgDistortion; // find the min values for (int pointIdx = 0; pointIdx < samplePoints.length; pointIdx++) { double minDist = Double.MAX_VALUE; for (int clusterPointIdx = 0; clusterPointIdx < clusterPoints.length; clusterPointIdx++) { double newMinDist = calcDist(samplePoints[pointIdx], clusterPoints[clusterPointIdx]); if (newMinDist < minDist) { minDist = newMinDist; pointApproxIndices[pointIdx] = clusterPointIdx; } } } // update codebook for (int clusterPointIdx = 0; clusterPointIdx < clusterPoints.length; clusterPointIdx++) { double[] newClusterPoint = new double[pointDimension]; int num = 0; for (int pointIdx = 0; pointIdx < samplePoints.length; pointIdx++) { if (pointApproxIndices[pointIdx] == clusterPointIdx) { addPointValues(newClusterPoint, samplePoints[pointIdx]); num++; } } if (num > 0) { multiplyPointValues(newClusterPoint, 1.0 / (double) num); clusterPoints[clusterPointIdx] = newClusterPoint; } } // update average distortion avgDistortion = 0.0; for (int pointIdx = 0; pointIdx < samplePoints.length; pointIdx++) { avgDistortion += calcDist(samplePoints[pointIdx], clusterPoints[pointApproxIndices[pointIdx]]); } avgDistortion /= (double) (samplePoints.length * pointDimension); } while (((curAvgDistortion - avgDistortion) / curAvgDistortion) > epsilon); return clusterPoints.length; } protected double[] initializeClusterPoint(double[][] pointsInCluster) { // calculate point sum double[] clusterPoint = new double[pointDimension]; for (int numPoint = 0; numPoint < pointsInCluster.length; numPoint++) { addPointValues(clusterPoint, pointsInCluster[numPoint]); } // calculate average multiplyPointValues(clusterPoint, 1.0 / (double) pointsInCluster.length); return clusterPoint; } protected double[] createNewClusterPoint(double[] clusterPoint, int epsilonFactor) { double[] newClusterPoint = new double[pointDimension]; addPointValues(newClusterPoint, clusterPoint); multiplyPointValues(newClusterPoint, 1.0 + (double) epsilonFactor * epsilon); return newClusterPoint; } protected double calcDist(double[] v1, double[] v2) { double distSum = 0.0; for (int pointIdx = 0; pointIdx < v1.length; pointIdx++) { double absDist = Math.abs(v1[pointIdx] - v2[pointIdx]); distSum += absDist * absDist; } return distSum; } protected void addPointValues(double[] v1, double[] v2) { for (int pointIdx = 0; pointIdx < v1.length; pointIdx++) { v1[pointIdx] += v2[pointIdx]; } } protected void multiplyPointValues(double[] v1, double f) { for (int pointIdx = 0; pointIdx < v1.length; pointIdx++) { v1[pointIdx] *= f; } } public static void main(String[] args) { ArrayList<double[]> points = new ArrayList<double[]>(); // points.add(arrayOf(-1.5, -1.5)); points.add(arrayOf(-1.5, 2.0, 5.0)); points.add(arrayOf(-2.0, -2.0, 0.0)); points.add(arrayOf(1.0, 1.0, 2.0)); points.add(arrayOf(1.5, 1.5, 1.2)); points.add(arrayOf(1.0, 2.0, 5.6)); points.add(arrayOf(1.0, -2.0, -2.0)); points.add(arrayOf(1.0, -3.0, -2.0)); points.add(arrayOf(1.0, -2.5, -4.5)); GenLloyd gl = new GenLloyd(points.toArray(new double[points.size()][2])); double[][] results = gl.getClusterPoints(4); for (double[] point : results) { System.out.println("Cluster " + point[0] + ", " + point[1] + ", " + point[2]); } } private static double[] arrayOf(double x, double y, double z) { double[] a = new double[3]; a[0] = x; a[1] = y; a[2] = z; return a; } }
Output:
$ javac GenLloyd.java $ java GenLloyd Cluster -2.0, -2.0, 0.0 Cluster 1.0, -2.5, -2.833333333333333 Cluster 1.25, 1.25, 1.6 Cluster -0.25, 2.0, 5.3
Related posts:
Bootstrap a Web Application with Spring 5
Spring REST API with Protocol Buffers
Generic Constructors in Java
Multi Dimensional ArrayList in Java
A Custom Data Binder in Spring MVC
Extract network card address
Service Registration with Eureka
Java Program to Generate Random Numbers Using Multiply with Carry Method
Predicate trong Java 8
Quick Guide to java.lang.System
Java Program to Search Number Using Divide and Conquer with the Aid of Fibonacci Numbers
Java Program to Implement Quick Sort Using Randomization
Java Program to Implement Direct Addressing Tables
New Features in Java 9
Java Program to Find the Minimum value of Binary Search Tree
Chương trình Java đầu tiên
Apache Commons Collections SetUtils
Spring Boot Security Auto-Configuration
Spring Boot - Tomcat Port Number
Extra Login Fields with Spring Security
Java Program to Implement Efficient O(log n) Fibonacci generator
Remove the First Element from a List
Spring Cloud Series – The Gateway Pattern
Spring Data – CrudRepository save() Method
Java Program to Implement Min Hash
A Quick Guide to Using Keycloak with Spring Boot
How to Read HTTP Headers in Spring REST Controllers
Create Java Applet to Simulate Any Sorting Technique
Java Program to Find MST (Minimum Spanning Tree) using Kruskal’s Algorithm
Guide to PriorityBlockingQueue in Java
Guide to Apache Commons CircularFifoQueue
Java Program to Implement Quick sort