This is a Java Program to implement Lloyd’s Algorithm. The LBG-algorithm or Lloyd’s algorithm allows clustering of vectors of any dimension. This is helpful for example for image classification when using the SIFT or SURF algorithms. It might be also useful if you want to cluster a large amount of points on a map.
Here is the source code of the Java Program to Implement Lloyd’s Algorithm. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a java program to implement Lloyd’s Algorithm import java.util.ArrayList; public class GenLloyd { protected double[][] samplePoints; protected double[][] clusterPoints; int[] pointApproxIndices; int pointDimension = 0; protected double epsilon = 0.0005; protected double avgDistortion = 0.0; /** * Create Generalized Lloyd object with an array of sample points */ public GenLloyd(double[][] samplePoints) { this.setSamplePoints(samplePoints); } /** * Return epsilon parameter (accuracy) */ public double getEpsilon() { return epsilon; } /** * Set epsilon parameter (accuracy). Should be a small number 0.0 < epsilon * < 0.1 */ public void setEpsilon(double epsilon) { this.epsilon = epsilon; } /** * Set array of sample points */ public void setSamplePoints(double[][] samplePoints) { if (samplePoints.length > 0) { this.samplePoints = samplePoints; this.pointDimension = samplePoints[0].length; } } /** * Get array of sample points */ public double[][] getSamplePoints() { return samplePoints; } /** * Get calculated cluster points. <numClusters> cluster points will be * calculated and returned */ public double[][] getClusterPoints(int numClusters) { this.calcClusters(numClusters); return clusterPoints; } protected void calcClusters(int numClusters) { // initialize with first cluster clusterPoints = new double[1][pointDimension]; double[] newClusterPoint = initializeClusterPoint(samplePoints); clusterPoints[0] = newClusterPoint; if (numClusters > 1) { // calculate initial average distortion avgDistortion = 0.0; for (double[] samplePoint : samplePoints) { avgDistortion += calcDist(samplePoint, newClusterPoint); } avgDistortion /= (double) (samplePoints.length * pointDimension); // set up array of point approximization indices pointApproxIndices = new int[samplePoints.length]; // split the clusters int i = 1; do { i = splitClusters(); } while (i < numClusters); } } protected int splitClusters() { int newClusterPointSize = 2; if (clusterPoints.length != 1) { newClusterPointSize = clusterPoints.length * 2; } // split clusters double[][] newClusterPoints = new double[newClusterPointSize][pointDimension]; int newClusterPointIdx = 0; for (double[] clusterPoint : clusterPoints) { newClusterPoints[newClusterPointIdx] = createNewClusterPoint( clusterPoint, -1); newClusterPoints[newClusterPointIdx + 1] = createNewClusterPoint( clusterPoint, +1); newClusterPointIdx += 2; } clusterPoints = newClusterPoints; // iterate to approximate cluster points // int iteration = 0; double curAvgDistortion = 0.0; do { curAvgDistortion = avgDistortion; // find the min values for (int pointIdx = 0; pointIdx < samplePoints.length; pointIdx++) { double minDist = Double.MAX_VALUE; for (int clusterPointIdx = 0; clusterPointIdx < clusterPoints.length; clusterPointIdx++) { double newMinDist = calcDist(samplePoints[pointIdx], clusterPoints[clusterPointIdx]); if (newMinDist < minDist) { minDist = newMinDist; pointApproxIndices[pointIdx] = clusterPointIdx; } } } // update codebook for (int clusterPointIdx = 0; clusterPointIdx < clusterPoints.length; clusterPointIdx++) { double[] newClusterPoint = new double[pointDimension]; int num = 0; for (int pointIdx = 0; pointIdx < samplePoints.length; pointIdx++) { if (pointApproxIndices[pointIdx] == clusterPointIdx) { addPointValues(newClusterPoint, samplePoints[pointIdx]); num++; } } if (num > 0) { multiplyPointValues(newClusterPoint, 1.0 / (double) num); clusterPoints[clusterPointIdx] = newClusterPoint; } } // update average distortion avgDistortion = 0.0; for (int pointIdx = 0; pointIdx < samplePoints.length; pointIdx++) { avgDistortion += calcDist(samplePoints[pointIdx], clusterPoints[pointApproxIndices[pointIdx]]); } avgDistortion /= (double) (samplePoints.length * pointDimension); } while (((curAvgDistortion - avgDistortion) / curAvgDistortion) > epsilon); return clusterPoints.length; } protected double[] initializeClusterPoint(double[][] pointsInCluster) { // calculate point sum double[] clusterPoint = new double[pointDimension]; for (int numPoint = 0; numPoint < pointsInCluster.length; numPoint++) { addPointValues(clusterPoint, pointsInCluster[numPoint]); } // calculate average multiplyPointValues(clusterPoint, 1.0 / (double) pointsInCluster.length); return clusterPoint; } protected double[] createNewClusterPoint(double[] clusterPoint, int epsilonFactor) { double[] newClusterPoint = new double[pointDimension]; addPointValues(newClusterPoint, clusterPoint); multiplyPointValues(newClusterPoint, 1.0 + (double) epsilonFactor * epsilon); return newClusterPoint; } protected double calcDist(double[] v1, double[] v2) { double distSum = 0.0; for (int pointIdx = 0; pointIdx < v1.length; pointIdx++) { double absDist = Math.abs(v1[pointIdx] - v2[pointIdx]); distSum += absDist * absDist; } return distSum; } protected void addPointValues(double[] v1, double[] v2) { for (int pointIdx = 0; pointIdx < v1.length; pointIdx++) { v1[pointIdx] += v2[pointIdx]; } } protected void multiplyPointValues(double[] v1, double f) { for (int pointIdx = 0; pointIdx < v1.length; pointIdx++) { v1[pointIdx] *= f; } } public static void main(String[] args) { ArrayList<double[]> points = new ArrayList<double[]>(); // points.add(arrayOf(-1.5, -1.5)); points.add(arrayOf(-1.5, 2.0, 5.0)); points.add(arrayOf(-2.0, -2.0, 0.0)); points.add(arrayOf(1.0, 1.0, 2.0)); points.add(arrayOf(1.5, 1.5, 1.2)); points.add(arrayOf(1.0, 2.0, 5.6)); points.add(arrayOf(1.0, -2.0, -2.0)); points.add(arrayOf(1.0, -3.0, -2.0)); points.add(arrayOf(1.0, -2.5, -4.5)); GenLloyd gl = new GenLloyd(points.toArray(new double[points.size()][2])); double[][] results = gl.getClusterPoints(4); for (double[] point : results) { System.out.println("Cluster " + point[0] + ", " + point[1] + ", " + point[2]); } } private static double[] arrayOf(double x, double y, double z) { double[] a = new double[3]; a[0] = x; a[1] = y; a[2] = z; return a; } }
Output:
$ javac GenLloyd.java $ java GenLloyd Cluster -2.0, -2.0, 0.0 Cluster 1.0, -2.5, -2.833333333333333 Cluster 1.25, 1.25, 1.6 Cluster -0.25, 2.0, 5.3
Related posts:
Java Program to Implement Sieve Of Sundaram
Java Program to Solve Knapsack Problem Using Dynamic Programming
Receive email using POP3
Using a List of Values in a JdbcTemplate IN Clause
Java Program to Perform Optimal Paranthesization Using Dynamic Programming
New Features in Java 11
Java Program to Implement Self Balancing Binary Search Tree
Introduction to the Java NIO Selector
Comparing Arrays in Java
Command-Line Arguments in Java
New Features in Java 15
Limiting Query Results with JPA and Spring Data JPA
Java Program to Solve a Matching Problem for a Given Specific Case
Java Program to Implement Vector API
RestTemplate Post Request with JSON
Guide to @JsonFormat in Jackson
Wiring in Spring: @Autowired, @Resource and @Inject
Using JWT with Spring Security OAuth (legacy stack)
A Guide to Queries in Spring Data MongoDB
Java Program to Solve the Fractional Knapsack Problem
Java Program to implement Bit Matrix
Tìm hiểu về xác thực và phân quyền trong ứng dụng
Hướng dẫn Java Design Pattern – DAO
Spring Security Authentication Provider
The Difference Between map() and flatMap()
An Introduction to ThreadLocal in Java
Giới thiệu Aspect Oriented Programming (AOP)
Java – Combine Multiple Collections
Spring Cloud – Securing Services
Jackson – Change Name of Field
Hướng dẫn Java Design Pattern – Bridge
Converting Java Date to OffsetDateTime