This is a Java Program to implement Lloyd’s Algorithm. The LBG-algorithm or Lloyd’s algorithm allows clustering of vectors of any dimension. This is helpful for example for image classification when using the SIFT or SURF algorithms. It might be also useful if you want to cluster a large amount of points on a map.
Here is the source code of the Java Program to Implement Lloyd’s Algorithm. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a java program to implement Lloyd’s Algorithm import java.util.ArrayList; public class GenLloyd { protected double[][] samplePoints; protected double[][] clusterPoints; int[] pointApproxIndices; int pointDimension = 0; protected double epsilon = 0.0005; protected double avgDistortion = 0.0; /** * Create Generalized Lloyd object with an array of sample points */ public GenLloyd(double[][] samplePoints) { this.setSamplePoints(samplePoints); } /** * Return epsilon parameter (accuracy) */ public double getEpsilon() { return epsilon; } /** * Set epsilon parameter (accuracy). Should be a small number 0.0 < epsilon * < 0.1 */ public void setEpsilon(double epsilon) { this.epsilon = epsilon; } /** * Set array of sample points */ public void setSamplePoints(double[][] samplePoints) { if (samplePoints.length > 0) { this.samplePoints = samplePoints; this.pointDimension = samplePoints[0].length; } } /** * Get array of sample points */ public double[][] getSamplePoints() { return samplePoints; } /** * Get calculated cluster points. <numClusters> cluster points will be * calculated and returned */ public double[][] getClusterPoints(int numClusters) { this.calcClusters(numClusters); return clusterPoints; } protected void calcClusters(int numClusters) { // initialize with first cluster clusterPoints = new double[1][pointDimension]; double[] newClusterPoint = initializeClusterPoint(samplePoints); clusterPoints[0] = newClusterPoint; if (numClusters > 1) { // calculate initial average distortion avgDistortion = 0.0; for (double[] samplePoint : samplePoints) { avgDistortion += calcDist(samplePoint, newClusterPoint); } avgDistortion /= (double) (samplePoints.length * pointDimension); // set up array of point approximization indices pointApproxIndices = new int[samplePoints.length]; // split the clusters int i = 1; do { i = splitClusters(); } while (i < numClusters); } } protected int splitClusters() { int newClusterPointSize = 2; if (clusterPoints.length != 1) { newClusterPointSize = clusterPoints.length * 2; } // split clusters double[][] newClusterPoints = new double[newClusterPointSize][pointDimension]; int newClusterPointIdx = 0; for (double[] clusterPoint : clusterPoints) { newClusterPoints[newClusterPointIdx] = createNewClusterPoint( clusterPoint, -1); newClusterPoints[newClusterPointIdx + 1] = createNewClusterPoint( clusterPoint, +1); newClusterPointIdx += 2; } clusterPoints = newClusterPoints; // iterate to approximate cluster points // int iteration = 0; double curAvgDistortion = 0.0; do { curAvgDistortion = avgDistortion; // find the min values for (int pointIdx = 0; pointIdx < samplePoints.length; pointIdx++) { double minDist = Double.MAX_VALUE; for (int clusterPointIdx = 0; clusterPointIdx < clusterPoints.length; clusterPointIdx++) { double newMinDist = calcDist(samplePoints[pointIdx], clusterPoints[clusterPointIdx]); if (newMinDist < minDist) { minDist = newMinDist; pointApproxIndices[pointIdx] = clusterPointIdx; } } } // update codebook for (int clusterPointIdx = 0; clusterPointIdx < clusterPoints.length; clusterPointIdx++) { double[] newClusterPoint = new double[pointDimension]; int num = 0; for (int pointIdx = 0; pointIdx < samplePoints.length; pointIdx++) { if (pointApproxIndices[pointIdx] == clusterPointIdx) { addPointValues(newClusterPoint, samplePoints[pointIdx]); num++; } } if (num > 0) { multiplyPointValues(newClusterPoint, 1.0 / (double) num); clusterPoints[clusterPointIdx] = newClusterPoint; } } // update average distortion avgDistortion = 0.0; for (int pointIdx = 0; pointIdx < samplePoints.length; pointIdx++) { avgDistortion += calcDist(samplePoints[pointIdx], clusterPoints[pointApproxIndices[pointIdx]]); } avgDistortion /= (double) (samplePoints.length * pointDimension); } while (((curAvgDistortion - avgDistortion) / curAvgDistortion) > epsilon); return clusterPoints.length; } protected double[] initializeClusterPoint(double[][] pointsInCluster) { // calculate point sum double[] clusterPoint = new double[pointDimension]; for (int numPoint = 0; numPoint < pointsInCluster.length; numPoint++) { addPointValues(clusterPoint, pointsInCluster[numPoint]); } // calculate average multiplyPointValues(clusterPoint, 1.0 / (double) pointsInCluster.length); return clusterPoint; } protected double[] createNewClusterPoint(double[] clusterPoint, int epsilonFactor) { double[] newClusterPoint = new double[pointDimension]; addPointValues(newClusterPoint, clusterPoint); multiplyPointValues(newClusterPoint, 1.0 + (double) epsilonFactor * epsilon); return newClusterPoint; } protected double calcDist(double[] v1, double[] v2) { double distSum = 0.0; for (int pointIdx = 0; pointIdx < v1.length; pointIdx++) { double absDist = Math.abs(v1[pointIdx] - v2[pointIdx]); distSum += absDist * absDist; } return distSum; } protected void addPointValues(double[] v1, double[] v2) { for (int pointIdx = 0; pointIdx < v1.length; pointIdx++) { v1[pointIdx] += v2[pointIdx]; } } protected void multiplyPointValues(double[] v1, double f) { for (int pointIdx = 0; pointIdx < v1.length; pointIdx++) { v1[pointIdx] *= f; } } public static void main(String[] args) { ArrayList<double[]> points = new ArrayList<double[]>(); // points.add(arrayOf(-1.5, -1.5)); points.add(arrayOf(-1.5, 2.0, 5.0)); points.add(arrayOf(-2.0, -2.0, 0.0)); points.add(arrayOf(1.0, 1.0, 2.0)); points.add(arrayOf(1.5, 1.5, 1.2)); points.add(arrayOf(1.0, 2.0, 5.6)); points.add(arrayOf(1.0, -2.0, -2.0)); points.add(arrayOf(1.0, -3.0, -2.0)); points.add(arrayOf(1.0, -2.5, -4.5)); GenLloyd gl = new GenLloyd(points.toArray(new double[points.size()][2])); double[][] results = gl.getClusterPoints(4); for (double[] point : results) { System.out.println("Cluster " + point[0] + ", " + point[1] + ", " + point[2]); } } private static double[] arrayOf(double x, double y, double z) { double[] a = new double[3]; a[0] = x; a[1] = y; a[2] = z; return a; } }
Output:
$ javac GenLloyd.java $ java GenLloyd Cluster -2.0, -2.0, 0.0 Cluster 1.0, -2.5, -2.833333333333333 Cluster 1.25, 1.25, 1.6 Cluster -0.25, 2.0, 5.3
Related posts:
Filtering a Stream of Optionals in Java
Java Program to Find Whether a Path Exists Between 2 Given Nodes
Java 8 Predicate Chain
Receive email using IMAP
Java Program to Implement Strassen Algorithm
Add Multiple Items to an Java ArrayList
Tránh lỗi ConcurrentModificationException trong Java như thế nào?
Split a String in Java
Java Program to Test Using DFS Whether a Directed Graph is Strongly Connected or Not
Java – Reader to Byte Array
Java – Write a Reader to File
Guide to java.util.concurrent.Locks
String Operations with Java Streams
Java Program to Perform Polygon Containment Test
Java Program to Implement wheel Sieve to Generate Prime Numbers Between Given Range
Java Program to Check the Connectivity of Graph Using BFS
Java Program to Implement LinkedList API
Spring RequestMapping
Java Program to Convert a Decimal Number to Binary Number using Stacks
Java Program to Perform Optimal Paranthesization Using Dynamic Programming
Java Program to Implement Circular Doubly Linked List
Java Program to Find MST (Minimum Spanning Tree) using Kruskal’s Algorithm
Java Program to Implement SimpeBindings API
Spring Boot - Logging
JUnit5 Programmatic Extension Registration with @RegisterExtension
Integer Constant Pool trong Java
Generating Random Dates in Java
Java Program to Implement Trie
Spring Boot - Code Structure
Java Program to Implement Tarjan Algorithm
So sánh HashSet, LinkedHashSet và TreeSet trong Java
So sánh HashMap và Hashtable trong Java