Java Program to Implement Lloyd’s Algorithm

This is a Java Program to implement Lloyd’s Algorithm. The LBG-algorithm or Lloyd’s algorithm allows clustering of vectors of any dimension. This is helpful for example for image classification when using the SIFT or SURF algorithms. It might be also useful if you want to cluster a large amount of points on a map.

Here is the source code of the Java Program to Implement Lloyd’s Algorithm. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.

//This is a java program to implement Lloyd’s Algorithm
import java.util.ArrayList;
 
public class GenLloyd
{
    protected double[][] samplePoints;
    protected double[][] clusterPoints;
 
    int[] pointApproxIndices;
    int pointDimension = 0;
    protected double epsilon = 0.0005;
    protected double avgDistortion = 0.0;
 
    /**
     * Create Generalized Lloyd object with an array of sample points
     */
    public GenLloyd(double[][] samplePoints)
    {
        this.setSamplePoints(samplePoints);
    }
 
    /**
     * Return epsilon parameter (accuracy)
     */
    public double getEpsilon()
    {
        return epsilon;
    }
 
    /**
     * Set epsilon parameter (accuracy). Should be a small number 0.0 < epsilon
     * < 0.1
     */
    public void setEpsilon(double epsilon)
    {
        this.epsilon = epsilon;
    }
 
    /**
     * Set array of sample points
     */
    public void setSamplePoints(double[][] samplePoints)
    {
        if (samplePoints.length > 0)
        {
            this.samplePoints = samplePoints;
            this.pointDimension = samplePoints[0].length;
        }
    }
 
    /**
     * Get array of sample points
     */
    public double[][] getSamplePoints()
    {
        return samplePoints;
    }
 
    /**
     * Get calculated cluster points. <numClusters> cluster points will be
     * calculated and returned
     */
    public double[][] getClusterPoints(int numClusters)
    {
        this.calcClusters(numClusters);
 
        return clusterPoints;
    }
 
    protected void calcClusters(int numClusters)
    {
        // initialize with first cluster
        clusterPoints = new double[1][pointDimension];
 
        double[] newClusterPoint = initializeClusterPoint(samplePoints);
        clusterPoints[0] = newClusterPoint;
 
        if (numClusters > 1)
        {
            // calculate initial average distortion
            avgDistortion = 0.0;
            for (double[] samplePoint : samplePoints)
            {
                avgDistortion += calcDist(samplePoint, newClusterPoint);
            }
 
            avgDistortion /= (double) (samplePoints.length * pointDimension);
 
            // set up array of point approximization indices
            pointApproxIndices = new int[samplePoints.length];
 
            // split the clusters
            int i = 1;
            do
            {
                i = splitClusters();
            } while (i < numClusters);
        }
    }
 
    protected int splitClusters()
    {
        int newClusterPointSize = 2;
        if (clusterPoints.length != 1)
        {
            newClusterPointSize = clusterPoints.length * 2;
        }
 
        // split clusters
        double[][] newClusterPoints = new double[newClusterPointSize][pointDimension];
        int newClusterPointIdx = 0;
        for (double[] clusterPoint : clusterPoints)
        {
            newClusterPoints[newClusterPointIdx] = createNewClusterPoint(
                    clusterPoint, -1);
            newClusterPoints[newClusterPointIdx + 1] = createNewClusterPoint(
                    clusterPoint, +1);
 
            newClusterPointIdx += 2;
        }
 
        clusterPoints = newClusterPoints;
 
        // iterate to approximate cluster points
        // int iteration = 0;
        double curAvgDistortion = 0.0;
        do
        {
            curAvgDistortion = avgDistortion;
 
            // find the min values
            for (int pointIdx = 0; pointIdx < samplePoints.length; pointIdx++)
            {
                double minDist = Double.MAX_VALUE;
                for (int clusterPointIdx = 0; clusterPointIdx < clusterPoints.length; clusterPointIdx++)
                {
                    double newMinDist = calcDist(samplePoints[pointIdx],
                            clusterPoints[clusterPointIdx]);
                    if (newMinDist < minDist)
                    {
                        minDist = newMinDist;
                        pointApproxIndices[pointIdx] = clusterPointIdx;
                    }
                }
            }
 
            // update codebook
            for (int clusterPointIdx = 0; clusterPointIdx < clusterPoints.length; clusterPointIdx++)
            {
                double[] newClusterPoint = new double[pointDimension];
                int num = 0;
                for (int pointIdx = 0; pointIdx < samplePoints.length; pointIdx++)
                {
                    if (pointApproxIndices[pointIdx] == clusterPointIdx)
                    {
                        addPointValues(newClusterPoint, samplePoints[pointIdx]);
                        num++;
                    }
                }
 
                if (num > 0)
                {
                    multiplyPointValues(newClusterPoint, 1.0 / (double) num);
                    clusterPoints[clusterPointIdx] = newClusterPoint;
                }
            }
 
            // update average distortion
            avgDistortion = 0.0;
            for (int pointIdx = 0; pointIdx < samplePoints.length; pointIdx++)
            {
                avgDistortion += calcDist(samplePoints[pointIdx],
                        clusterPoints[pointApproxIndices[pointIdx]]);
            }
 
            avgDistortion /= (double) (samplePoints.length * pointDimension);
 
        } while (((curAvgDistortion - avgDistortion) / curAvgDistortion) > epsilon);
 
        return clusterPoints.length;
    }
 
    protected double[] initializeClusterPoint(double[][] pointsInCluster)
    {
        // calculate point sum
        double[] clusterPoint = new double[pointDimension];
        for (int numPoint = 0; numPoint < pointsInCluster.length; numPoint++)
        {
            addPointValues(clusterPoint, pointsInCluster[numPoint]);
        }
 
        // calculate average
        multiplyPointValues(clusterPoint, 1.0 / (double) pointsInCluster.length);
 
        return clusterPoint;
    }
 
    protected double[] createNewClusterPoint(double[] clusterPoint,
            int epsilonFactor)
    {
        double[] newClusterPoint = new double[pointDimension];
        addPointValues(newClusterPoint, clusterPoint);
        multiplyPointValues(newClusterPoint, 1.0 + (double) epsilonFactor
                * epsilon);
 
        return newClusterPoint;
    }
 
    protected double calcDist(double[] v1, double[] v2)
    {
        double distSum = 0.0;
        for (int pointIdx = 0; pointIdx < v1.length; pointIdx++)
        {
            double absDist = Math.abs(v1[pointIdx] - v2[pointIdx]);
            distSum += absDist * absDist;
        }
 
        return distSum;
    }
 
    protected void addPointValues(double[] v1, double[] v2)
    {
        for (int pointIdx = 0; pointIdx < v1.length; pointIdx++)
        {
            v1[pointIdx] += v2[pointIdx];
        }
    }
 
    protected void multiplyPointValues(double[] v1, double f)
    {
        for (int pointIdx = 0; pointIdx < v1.length; pointIdx++)
        {
            v1[pointIdx] *= f;
        }
    }
 
    public static void main(String[] args)
    {
        ArrayList<double[]> points = new ArrayList<double[]>();
 
        // points.add(arrayOf(-1.5, -1.5));
        points.add(arrayOf(-1.5, 2.0, 5.0));
        points.add(arrayOf(-2.0, -2.0, 0.0));
        points.add(arrayOf(1.0, 1.0, 2.0));
        points.add(arrayOf(1.5, 1.5, 1.2));
        points.add(arrayOf(1.0, 2.0, 5.6));
        points.add(arrayOf(1.0, -2.0, -2.0));
        points.add(arrayOf(1.0, -3.0, -2.0));
        points.add(arrayOf(1.0, -2.5, -4.5));
 
        GenLloyd gl = new GenLloyd(points.toArray(new double[points.size()][2]));
 
        double[][] results = gl.getClusterPoints(4);
        for (double[] point : results)
        {
            System.out.println("Cluster " + point[0] + ", " + point[1] + ", "
                    + point[2]);
        }
    }
 
    private static double[] arrayOf(double x, double y, double z)
    {
        double[] a = new double[3];
        a[0] = x;
        a[1] = y;
        a[2] = z;
 
        return a;
    }
}

Output:

$ javac GenLloyd.java
$ java GenLloyd
 
Cluster -2.0, -2.0, 0.0
Cluster 1.0, -2.5, -2.833333333333333
Cluster 1.25, 1.25, 1.6
Cluster -0.25, 2.0, 5.3

Related posts:

Spring Web Annotations
Spring Boot - CORS Support
Java Program to Apply DFS to Perform the Topological Sorting of a Directed Acyclic Graph
Hướng dẫn Java Design Pattern – Iterator
Java 8 Stream API Analogies in Kotlin
Guide to java.util.concurrent.Locks
Java Program to Implement Counting Sort
Spring Security Remember Me
So sánh ArrayList và Vector trong Java
Java Program to Generate All Pairs of Subsets Whose Union Make the Set
Ép kiểu trong Java (Type casting)
So sánh ArrayList và LinkedList trong Java
Java Multi-line String
Java Program to Implement Ford–Fulkerson Algorithm
Introduction to the Java NIO2 File API
Java Program to Find Nearest Neighbor for Static Data Set
Multi Dimensional ArrayList in Java
Java Program to Generate Randomized Sequence of Given Range of Numbers
Quản lý bộ nhớ trong Java với Heap Space vs Stack
Guide to the Java Queue Interface
HttpClient 4 – Send Custom Cookie
Overflow and Underflow in Java
Java Program to find the maximum subarray sum O(n^2) time(naive method)
Calling Stored Procedures from Spring Data JPA Repositories
Java Program to Test Using DFS Whether a Directed Graph is Strongly Connected or Not
Java Program to Represent Graph Using Incidence List
Java Program to Solve the Fractional Knapsack Problem
ETL with Spring Cloud Data Flow
Java Program to Sort an Array of 10 Elements Using Heap Sort Algorithm
Java Program to Find Maximum Element in an Array using Binary Search
Java Program to Implement Doubly Linked List
Error Handling for REST with Spring