This Java program to find mst using kruskal’s algorithm.Kruskal’s algorithm is a greedy algorithm in graph theory that finds a minimum spanning tree for a connected weighted graph. This means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges in the tree is minimized
Here is the source code of the Java program to find mst using kruskal’s algorithm. The Java program is successfully compiled and run on a Linux system. The program output is also shown below.
import java.util.Collections;
import java.util.Comparator;
import java.util.LinkedList;
import java.util.List;
import java.util.Scanner;
import java.util.Stack;
public class KruskalAlgorithm
{
private List<Edge> edges;
private int numberOfVertices;
public static final int MAX_VALUE = 999;
private int visited[];
private int spanning_tree[][];
public KruskalAlgorithm(int numberOfVertices)
{
this.numberOfVertices = numberOfVertices;
edges = new LinkedList<Edge>();
visited = new int[this.numberOfVertices + 1];
spanning_tree = new int[numberOfVertices + 1][numberOfVertices + 1];
}
public void kruskalAlgorithm(int adjacencyMatrix[][])
{
boolean finished = false;
for (int source = 1; source <= numberOfVertices; source++)
{
for (int destination = 1; destination <= numberOfVertices; destination++)
{
if (adjacencyMatrix[destination] != MAX_VALUE && source != destination)
{
Edge edge = new Edge();
edge.sourcevertex = source;
edge.destinationvertex = destination;
edge.weight = adjacencyMatrix[destination];
adjacencyMatrix[destination] = MAX_VALUE;
edges.add(edge);
}
}
}
Collections.sort(edges, new EdgeComparator());
CheckCycle checkCycle = new CheckCycle();
for (Edge edge : edges)
{
spanning_tree[edge.sourcevertex][edge.destinationvertex] = edge.weight;
spanning_tree[edge.destinationvertex][edge.sourcevertex] = edge.weight;
if (checkCycle.checkCycle(spanning_tree, edge.sourcevertex))
{
spanning_tree[edge.sourcevertex][edge.destinationvertex] = 0;
spanning_tree[edge.destinationvertex][edge.sourcevertex] = 0;
edge.weight = -1;
continue;
}
visited[edge.sourcevertex] = 1;
visited[edge.destinationvertex] = 1;
for (int i = 0; i < visited.length; i++)
{
if (visited[i] == 0)
{
finished = false;
break;
} else
{
finished = true;
}
}
if (finished)
break;
}
System.out.println("The spanning tree is ");
for (int i = 1; i <= numberOfVertices; i++)
System.out.print("\t" + i);
System.out.println();
for (int source = 1; source <= numberOfVertices; source++)
{
System.out.print(source + "\t");
for (int destination = 1; destination <= numberOfVertices; destination++)
{
System.out.print(spanning_tree[destination] + "\t");
}
System.out.println();
}
}
public static void main(String... arg)
{
int adjacency_matrix[][];
int number_of_vertices;
Scanner scan = new Scanner(System.in);
System.out.println("Enter the number of vertices");
number_of_vertices = scan.nextInt();
adjacency_matrix = new int[number_of_vertices + 1][number_of_vertices + 1];
System.out.println("Enter the Weighted Matrix for the graph");
for (int i = 1; i <= number_of_vertices; i++)
{
for (int j = 1; j <= number_of_vertices; j++)
{
adjacency_matrix[i][j] = scan.nextInt();
if (i == j)
{
adjacency_matrix[i][j] = 0;
continue;
}
if (adjacency_matrix[i][j] == 0)
{
adjacency_matrix[i][j] = MAX_VALUE;
}
}
}
KruskalAlgorithm kruskalAlgorithm = new KruskalAlgorithm(number_of_vertices);
kruskalAlgorithm.kruskalAlgorithm(adjacency_matrix);
scan.close();
}
}
class Edge
{
int sourcevertex;
int destinationvertex;
int weight;
}
class EdgeComparator implements Comparator<Edge>
{
@Override
public int compare(Edge edge1, Edge edge2)
{
if (edge1.weight < edge2.weight)
return -1;
if (edge1.weight > edge2.weight)
return 1;
return 0;
}
}
class CheckCycle
{
private Stack<Integer> stack;
private int adjacencyMatrix[][];
public CheckCycle()
{
stack = new Stack<Integer>();
}
public boolean checkCycle(int adjacency_matrix[][], int source)
{
boolean cyclepresent = false;
int number_of_nodes = adjacency_matrix.length - 1;
adjacencyMatrix = new int[number_of_nodes + 1][number_of_nodes + 1];
for (int sourcevertex = 1; sourcevertex <= number_of_nodes; sourcevertex++)
{
for (int destinationvertex = 1; destinationvertex <= number_of_nodes; destinationvertex++)
{
adjacencyMatrix[sourcevertex][destinationvertex] = adjacency_matrix[sourcevertex[destinationvertex];
}
}
int visited[] = new int[number_of_nodes + 1];
int element = source;
int i = source;
visited = 1;
stack.push(source);
while (!stack.isEmpty())
{
element = stack.peek();
i = element;
while (i <= number_of_nodes)
{
if (adjacencyMatrix[element][i] >= 1 && visited[i] == 1)
{
if (stack.contains(i))
{
cyclepresent = true;
return cyclepresent;
}
}
if (adjacencyMatrix[element][i] >= 1 && visited[i] == 0)
{
stack.push(i);
visited[i] = 1;
adjacencyMatrix[element][i] = 0;// mark as labelled;
adjacencyMatrix[i][element] = 0;
element = i;
i = 1;
continue;
}
i++;
}
stack.pop();
}
return cyclepresent;
}
}
$javac KruskalAlgorithm.java $java KruskalAlgorithm Enter the number of vertices 6 Enter the Weighted Matrix for the graph 0 6 8 6 0 0 6 0 0 5 10 0 8 0 0 7 5 3 6 5 7 0 0 0 0 10 5 0 0 3 0 0 3 0 3 0 The spanning tree is 1 2 3 4 5 6 1 0 6 0 0 0 0 2 6 0 0 5 0 0 3 0 0 0 7 0 3 4 0 5 7 0 0 0 5 0 0 0 0 0 3 6 0 0 3 0 3 0
Related posts:
Intro to Inversion of Control and Dependency Injection with Spring
Guide to java.util.Formatter
Java Program to Implement Circular Singly Linked List
Custom Thread Pools In Java 8 Parallel Streams
How to Delay Code Execution in Java
Java Program to Implement Stack using Two Queues
Java Program to Implement Find all Back Edges in a Graph
Introduction to Java 8 Streams
Hướng dẫn sử dụng lớp Console trong java
Dockerizing a Spring Boot Application
Generating Random Dates in Java
Java Program to Implement Bubble Sort
Introduction to the Java NIO Selector
Java Program to Implement Flood Fill Algorithm
Guide to the Synchronized Keyword in Java
Autoboxing và Unboxing trong Java
Spring Boot - Rest Controller Unit Test
Introduction to Spring Cloud Netflix – Eureka
Spring’s RequestBody and ResponseBody Annotations
Guide to Apache Commons CircularFifoQueue
Java Program to Implement AA Tree
Java Program to Implement Gauss Jordan Elimination
Câu lệnh điều khiển vòng lặp trong Java (break, continue)
Java Program to Solve a Matching Problem for a Given Specific Case
Date Time trong Java 8
Java Program to Implement Sorted Singly Linked List
Optional trong Java 8
TreeSet và sử dụng Comparable, Comparator trong java
Guide to Spring Cloud Kubernetes
Hướng dẫn Java Design Pattern – Proxy
Java Program to Solve Travelling Salesman Problem for Unweighted Graph
Java Program to Implement Dijkstra’s Algorithm using Queue