Java Program to Create a Balanced Binary Tree of the Incoming Data

This is a Java Program to implement Self Balancing Binary Tree. A self-balancing (or height-balanced) binary tree is any node-based binary tree that automatically keeps its height (maximal number of levels below the root) small in the face of arbitrary item insertions and deletions.
These structures provide efficient implementations for mutable ordered lists, and can be used for other abstract data structures such as associative arrays, priority queues and sets. The implementation of self balancing binary tree is similar to that of a AVL Tree data structure.

Here is the source code of the Java Program to Create a Balanced Binary Tree of the Incoming Data. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.

//This is a java program to make a self balancing binary tree for the input data
import java.util.Scanner;
 
class SBBSTNodes
{
    SBBSTNodes left, right;
    int        data;
    int        height;
 
    public SBBSTNodes()
    {
        left = null;
        right = null;
        data = 0;
        height = 0;
    }
 
    public SBBSTNodes(int n)
    {
 
        left = null;
        right = null;
        data = n;
        height = 0;
    }
}
 
class SelfBalancingBinarySearchTrees
{
    private SBBSTNodes root;
 
    public SelfBalancingBinarySearchTrees()
    {
        root = null;
    }
 
    public boolean isEmpty()
    {
        return root == null;
    }
 
    public void clear()
    {
        root = null;
    }
 
    public void insert(int data)
    {
        root = insert(data, root);
    }
 
    private int height(SBBSTNodes t)
    {
 
        return t == null ? -1 : t.height;
    }
 
    private int max(int lhs, int rhs)
    {
        return lhs > rhs ? lhs : rhs;
    }
 
    private SBBSTNodes insert(int x, SBBSTNodes t)
    {
        if (t == null)
            t = new SBBSTNodes(x);
        else if (x < t.data)
        {
            t.left = insert(x, t.left);
            if (height(t.left) - height(t.right) == 2)
                if (x < t.left.data)
                    t = rotateWithLeftChild(t);
                else
                    t = doubleWithLeftChild(t);
        } else if (x > t.data)
        {
            t.right = insert(x, t.right);
            if (height(t.right) - height(t.left) == 2)
                if (x > t.right.data)
                    t = rotateWithRightChild(t);
                else
                    t = doubleWithRightChild(t);
        } else
            ;
        t.height = max(height(t.left), height(t.right)) + 1;
        return t;
    }
 
    private SBBSTNodes rotateWithLeftChild(SBBSTNodes k2)
    {
        SBBSTNodes k1 = k2.left;
        k2.left = k1.right;
        k1.right = k2;
        k2.height = max(height(k2.left), height(k2.right)) + 1;
        k1.height = max(height(k1.left), k2.height) + 1;
        return k1;
    }
 
    private SBBSTNodes rotateWithRightChild(SBBSTNodes k1)
    {
        SBBSTNodes k2 = k1.right;
        k1.right = k2.left;
        k2.left = k1;
        k1.height = max(height(k1.left), height(k1.right)) + 1;
        k2.height = max(height(k2.right), k1.height) + 1;
        return k2;
    }
 
    private SBBSTNodes doubleWithLeftChild(SBBSTNodes k3)
    {
        k3.left = rotateWithRightChild(k3.left);
        return rotateWithLeftChild(k3);
    }
 
    private SBBSTNodes doubleWithRightChild(SBBSTNodes k1)
    {
        k1.right = rotateWithLeftChild(k1.right);
        return rotateWithRightChild(k1);
    }
 
    public int countNodes()
    {
        return countNodes(root);
    }
 
    private int countNodes(SBBSTNodes r)
    {
        if (r == null)
            return 0;
        else
        {
            int l = 1;
            l += countNodes(r.left);
            l += countNodes(r.right);
            return l;
        }
    }
 
    public boolean search(int val)
    {
        return search(root, val);
    }
 
    private boolean search(SBBSTNodes r, int val)
    {
        boolean found = false;
        while ((r != null) && !found)
        {
            int rval = r.data;
            if (val < rval)
                r = r.left;
            else if (val > rval)
                r = r.right;
            else
            {
                found = true;
                break;
            }
            found = search(r, val);
        }
        return found;
    }
 
    public void inorder()
    {
        inorder(root);
    }
 
    private void inorder(SBBSTNodes r)
    {
        if (r != null)
        {
            inorder(r.left);
            System.out.print(r.data + " ");
            inorder(r.right);
        }
    }
 
    public void preorder()
    {
 
        preorder(root);
    }
 
    private void preorder(SBBSTNodes r)
    {
        if (r != null)
        {
            System.out.print(r.data + " ");
            preorder(r.left);
            preorder(r.right);
        }
    }
 
    public void postorder()
    {
        postorder(root);
    }
 
    private void postorder(SBBSTNodes r)
    {
        if (r != null)
        {
            postorder(r.left);
            postorder(r.right);
            System.out.print(r.data + " ");
        }
    }
}
 
public class Balanced_B_Tree
{
    public static void main(String[] args)
    {
        Scanner scan = new Scanner(System.in);
 
        SelfBalancingBinarySearchTrees sbbst = new SelfBalancingBinarySearchTrees();
        System.out.println("Self Balancing Tree\n");
 
        int N = 10;
        for (int i = 0; i < N; i++)
            sbbst.insert(scan.nextInt());
 
        System.out.println("\nPre-order  :");
        sbbst.preorder();
        System.out.println("\nIn-order   :");
        sbbst.inorder();
        System.out.println("\nPost-order :");
        sbbst.postorder();
        scan.close();
    }
}

Output:

$ javac Balanced_B_Tree.java
$ java Balanced_B_Tree
 
Self Balancing Tree
 
45
46
48
98
23
34
65
59
21
10
 
Pre-order  :
46 34 21 10 23 45 65 48 59 98 
In-order   :
10 21 23 34 45 46 48 59 65 98 
Post-order :
10 23 21 45 34 59 48 98 65 46

Related posts:

Spring Boot - Servlet Filter
Java Program to Find Whether a Path Exists Between 2 Given Nodes
ThreadPoolTaskExecutor corePoolSize vs. maxPoolSize
Java Program to Implement Heap Sort Using Library Functions
Java Program to Implement Skew Heap
Spring Cloud AWS – EC2
Java – Get Random Item/Element From a List
Java Program to Perform Cryptography Using Transposition Technique
Java Program to Perform the Shaker Sort
Java Program to Implement Double Ended Queue
Java – Convert File to InputStream
Java Program to Perform Postorder Non-Recursive Traversal of a Given Binary Tree
Guide to Spring @Autowired
Java Program to Perform Matrix Multiplication
Hướng dẫn Java Design Pattern – Abstract Factory
Form Validation with AngularJS and Spring MVC
Convert a Map to an Array, List or Set in Java
How to Set TLS Version in Apache HttpClient
Setting a Request Timeout for a Spring REST API
Java Program to Apply DFS to Perform the Topological Sorting of a Directed Acyclic Graph
Jackson vs Gson
String Processing with Apache Commons Lang 3
Java Program to Implement Hash Tables
The SpringJUnitConfig and SpringJUnitWebConfig Annotations in Spring 5
Các nguyên lý thiết kế hướng đối tượng – SOLID
So sánh ArrayList và Vector trong Java
Xử lý ngoại lệ đối với trường hợp ghi đè phương thức trong java
Java Program to Generate a Sequence of N Characters for a Given Specific Case
Spring Data JPA @Query
List Interface trong Java
StringBuilder vs StringBuffer in Java
Serverless Functions with Spring Cloud Function