This is a Java Program to implement AA Tree. An AA tree is a form of balanced tree used for storing and retrieving ordered data efficiently. AA trees are named for Arne Andersson, their inventor. AA trees are a variation of the red-black tree, which in turn is an enhancement to the binary search tree.
Here is the source code of the Java program to implement AA Tree. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
/** * Java Program to Implement AA Tree */ import java.util.Scanner; import java.util.NoSuchElementException; /** Class AANode **/ class AANode { AANode left, right; int element, level; /** Constructor **/ public AANode() { this.element = 0; this.left = this; this.right = this; this.level = 0; } /** Constructor **/ public AANode(int ele) { this(ele, null, null); } /** Constructor **/ public AANode(int ele, AANode left, AANode right) { this.element = ele; this.left = left; this.right = right; this.level = 1; } } /** Class AATree **/ class AATree { private AANode root; private static AANode nil = new AANode(); /** Constructor **/ public AATree() { root = nil; } /** Function to check if tree is empty **/ public boolean isEmpty() { return root == nil; } /** Make the tree empty **/ public void clear() { root = nil; } /* Functions to insert data */ public void insert(int X) { root = insert(X, root); } private AANode insert(int X, AANode T) { if (T == nil) T = new AANode(X, nil, nil); else if ( X < T.element ) T.left = insert(X, T.left); else if ( X > T.element) T.right = insert(X, T.right); else return T; T = skew(T); T = split(T); return T; } /** Function Skew **/ private AANode skew(AANode T) { if (T == nil) return nil; else if (T.left == nil) return T; else if (T.left.level == T.level) { AANode L = T.left; T.left = L.right; L.right = T; return L; } else return T; } /** Function split **/ private AANode split(AANode T) { if (T == nil) return nil; else if (T.right == nil || T.right.right == nil) return T; else if (T.level == T.right.right.level) { AANode R = T.right; T.right = R.left; R.left = T; R.level = R.level + 1; return R; } else return T; } /** Function decrease key **/ private AANode decreaseLevel(AANode T) { int shouldBe = Math.min(T.left.level, T.right.level) + 1; if (shouldBe < T.level) { T.level = shouldBe; if (shouldBe < T.right.level) T.right.level = shouldBe; } return T; } /** Functions to count number of nodes **/ public int countNodes() { return countNodes(root); } private int countNodes(AANode r) { if (r == nil) return 0; else { int l = 1; l += countNodes(r.left); l += countNodes(r.right); return l; } } /** Functions to search for an element **/ public boolean search(int val) { return search(root, val); } private boolean search(AANode r, int val) { boolean found = false; while ((r != nil) && !found) { int rval = r.element; if (val < rval) r = r.left; else if (val > rval) r = r.right; else { found = true; break; } found = search(r, val); } return found; } /** Function for inorder traversal **/ public void inorder() { inorder(root); } private void inorder(AANode r) { if (r != nil) { inorder(r.left); System.out.print(r.element +" "); inorder(r.right); } } /** Function for preorder traversal **/ public void preorder() { preorder(root); } private void preorder(AANode r) { if (r != nil) { System.out.print(r.element +" "); preorder(r.left); preorder(r.right); } } /** Function for postorder traversal **/ public void postorder() { postorder(root); } private void postorder(AANode r) { if (r != nil) { postorder(r.left); postorder(r.right); System.out.print(r.element +" "); } } } /** Class AATree **/ public class AATreeTest { public static void main(String[] args) { Scanner scan = new Scanner(System.in); /** Creating object of AATree **/ AATree aat = new AATree(); System.out.println("AATree Tree Test\n"); char ch; /** Perform tree operations **/ do { System.out.println("\nAATree Operations\n"); System.out.println("1. insert "); System.out.println("2. search"); System.out.println("3. count nodes"); System.out.println("4. check empty"); System.out.println("5. clear"); int choice = scan.nextInt(); switch (choice) { case 1 : System.out.println("Enter integer element to insert"); aat.insert( scan.nextInt() ); break; case 2 : System.out.println("Enter integer element to search"); System.out.println("Search result : "+ aat.search( scan.nextInt() )); break; case 3 : System.out.println("Nodes = "+ aat.countNodes()); break; case 4 : System.out.println("Empty status = "+ aat.isEmpty()); break; case 5 : System.out.println("\nTree Cleared"); aat.clear(); break; default : System.out.println("Wrong Entry \n "); break; } /** Display tree **/ System.out.print("\nPost order : "); aat.postorder(); System.out.print("\nPre order : "); aat.preorder(); System.out.print("\nIn order : "); aat.inorder(); System.out.println("\nDo you want to continue (Type y or n) \n"); ch = scan.next().charAt(0); } while (ch == 'Y'|| ch == 'y'); } }
AATree Tree Test AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 4 Empty status = true Post order : Pre order : In order : Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 24 Post order : 24 Pre order : 24 In order : 24 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 5 Post order : 24 5 Pre order : 5 24 In order : 5 24 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 28 Post order : 5 28 24 Pre order : 24 5 28 In order : 5 24 28 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 6 Post order : 6 5 28 24 Pre order : 24 5 6 28 In order : 5 6 24 28 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 94 Post order : 6 5 94 28 24 Pre order : 24 5 6 28 94 In order : 5 6 24 28 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 63 Post order : 6 5 28 94 63 24 Pre order : 24 5 6 63 28 94 In order : 5 6 24 28 63 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 19 Post order : 5 19 6 28 94 63 24 Pre order : 24 6 5 19 63 28 94 In order : 5 6 19 24 28 63 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 2 Enter integer element to search 24 Search result : true Post order : 5 19 6 28 94 63 24 Pre order : 24 6 5 19 63 28 94 In order : 5 6 19 24 28 63 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 2 Enter integer element to search 6 Search result : true Post order : 5 19 6 28 94 63 24 Pre order : 24 6 5 19 63 28 94 In order : 5 6 19 24 28 63 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 2 Enter integer element to search 7 Search result : false Post order : 5 19 6 28 94 63 24 Pre order : 24 6 5 19 63 28 94 In order : 5 6 19 24 28 63 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 3 Nodes = 7 Post order : 5 19 6 28 94 63 24 Pre order : 24 6 5 19 63 28 94 In order : 5 6 19 24 28 63 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 5 Tree Cleared Post order : Pre order : In order : Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 4 Empty status = true Post order : Pre order : In order : Do you want to continue (Type y or n) n
Related posts:
Java Program to Implement the Program Used in grep/egrep/fgrep
Giới thiệu JDBC Connection Pool
Custom JUnit 4 Test Runners
String Joiner trong Java 8
“Stream has already been operated upon or closed” Exception in Java
Java Program to Implement the Vigenere Cypher
Spring REST with a Zuul Proxy
Java Program to Check Whether an Undirected Graph Contains a Eulerian Path
Iterable to Stream in Java
Java Program to Implement Jarvis Algorithm
Java Program to Implement ScapeGoat Tree
Java Program to Implement SynchronosQueue API
Bootstrap a Web Application with Spring 5
Java Program to Implement Binomial Tree
Java Program to Check Cycle in a Graph using Topological Sort
Java – Write to File
Sử dụng JDBC API thực thi câu lệnh truy vấn dữ liệu
Custom Cascading in Spring Data MongoDB
Spring Boot Application as a Service
How to Get All Spring-Managed Beans?
Tổng quan về ngôn ngữ lập trình java
Overview of Spring Boot Dev Tools
New Features in Java 10
Collect a Java Stream to an Immutable Collection
LIKE Queries in Spring JPA Repositories
Pagination and Sorting using Spring Data JPA
Java Program to Find the Minimum value of Binary Search Tree
Join and Split Arrays and Collections in Java
A Guide to ConcurrentMap
Java equals() and hashCode() Contracts
OAuth2 for a Spring REST API – Handle the Refresh Token in Angular
Jackson Ignore Properties on Marshalling