This is a Java Program to implement AA Tree. An AA tree is a form of balanced tree used for storing and retrieving ordered data efficiently. AA trees are named for Arne Andersson, their inventor. AA trees are a variation of the red-black tree, which in turn is an enhancement to the binary search tree.
Here is the source code of the Java program to implement AA Tree. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
/** * Java Program to Implement AA Tree */ import java.util.Scanner; import java.util.NoSuchElementException; /** Class AANode **/ class AANode { AANode left, right; int element, level; /** Constructor **/ public AANode() { this.element = 0; this.left = this; this.right = this; this.level = 0; } /** Constructor **/ public AANode(int ele) { this(ele, null, null); } /** Constructor **/ public AANode(int ele, AANode left, AANode right) { this.element = ele; this.left = left; this.right = right; this.level = 1; } } /** Class AATree **/ class AATree { private AANode root; private static AANode nil = new AANode(); /** Constructor **/ public AATree() { root = nil; } /** Function to check if tree is empty **/ public boolean isEmpty() { return root == nil; } /** Make the tree empty **/ public void clear() { root = nil; } /* Functions to insert data */ public void insert(int X) { root = insert(X, root); } private AANode insert(int X, AANode T) { if (T == nil) T = new AANode(X, nil, nil); else if ( X < T.element ) T.left = insert(X, T.left); else if ( X > T.element) T.right = insert(X, T.right); else return T; T = skew(T); T = split(T); return T; } /** Function Skew **/ private AANode skew(AANode T) { if (T == nil) return nil; else if (T.left == nil) return T; else if (T.left.level == T.level) { AANode L = T.left; T.left = L.right; L.right = T; return L; } else return T; } /** Function split **/ private AANode split(AANode T) { if (T == nil) return nil; else if (T.right == nil || T.right.right == nil) return T; else if (T.level == T.right.right.level) { AANode R = T.right; T.right = R.left; R.left = T; R.level = R.level + 1; return R; } else return T; } /** Function decrease key **/ private AANode decreaseLevel(AANode T) { int shouldBe = Math.min(T.left.level, T.right.level) + 1; if (shouldBe < T.level) { T.level = shouldBe; if (shouldBe < T.right.level) T.right.level = shouldBe; } return T; } /** Functions to count number of nodes **/ public int countNodes() { return countNodes(root); } private int countNodes(AANode r) { if (r == nil) return 0; else { int l = 1; l += countNodes(r.left); l += countNodes(r.right); return l; } } /** Functions to search for an element **/ public boolean search(int val) { return search(root, val); } private boolean search(AANode r, int val) { boolean found = false; while ((r != nil) && !found) { int rval = r.element; if (val < rval) r = r.left; else if (val > rval) r = r.right; else { found = true; break; } found = search(r, val); } return found; } /** Function for inorder traversal **/ public void inorder() { inorder(root); } private void inorder(AANode r) { if (r != nil) { inorder(r.left); System.out.print(r.element +" "); inorder(r.right); } } /** Function for preorder traversal **/ public void preorder() { preorder(root); } private void preorder(AANode r) { if (r != nil) { System.out.print(r.element +" "); preorder(r.left); preorder(r.right); } } /** Function for postorder traversal **/ public void postorder() { postorder(root); } private void postorder(AANode r) { if (r != nil) { postorder(r.left); postorder(r.right); System.out.print(r.element +" "); } } } /** Class AATree **/ public class AATreeTest { public static void main(String[] args) { Scanner scan = new Scanner(System.in); /** Creating object of AATree **/ AATree aat = new AATree(); System.out.println("AATree Tree Test\n"); char ch; /** Perform tree operations **/ do { System.out.println("\nAATree Operations\n"); System.out.println("1. insert "); System.out.println("2. search"); System.out.println("3. count nodes"); System.out.println("4. check empty"); System.out.println("5. clear"); int choice = scan.nextInt(); switch (choice) { case 1 : System.out.println("Enter integer element to insert"); aat.insert( scan.nextInt() ); break; case 2 : System.out.println("Enter integer element to search"); System.out.println("Search result : "+ aat.search( scan.nextInt() )); break; case 3 : System.out.println("Nodes = "+ aat.countNodes()); break; case 4 : System.out.println("Empty status = "+ aat.isEmpty()); break; case 5 : System.out.println("\nTree Cleared"); aat.clear(); break; default : System.out.println("Wrong Entry \n "); break; } /** Display tree **/ System.out.print("\nPost order : "); aat.postorder(); System.out.print("\nPre order : "); aat.preorder(); System.out.print("\nIn order : "); aat.inorder(); System.out.println("\nDo you want to continue (Type y or n) \n"); ch = scan.next().charAt(0); } while (ch == 'Y'|| ch == 'y'); } }
AATree Tree Test AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 4 Empty status = true Post order : Pre order : In order : Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 24 Post order : 24 Pre order : 24 In order : 24 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 5 Post order : 24 5 Pre order : 5 24 In order : 5 24 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 28 Post order : 5 28 24 Pre order : 24 5 28 In order : 5 24 28 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 6 Post order : 6 5 28 24 Pre order : 24 5 6 28 In order : 5 6 24 28 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 94 Post order : 6 5 94 28 24 Pre order : 24 5 6 28 94 In order : 5 6 24 28 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 63 Post order : 6 5 28 94 63 24 Pre order : 24 5 6 63 28 94 In order : 5 6 24 28 63 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 19 Post order : 5 19 6 28 94 63 24 Pre order : 24 6 5 19 63 28 94 In order : 5 6 19 24 28 63 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 2 Enter integer element to search 24 Search result : true Post order : 5 19 6 28 94 63 24 Pre order : 24 6 5 19 63 28 94 In order : 5 6 19 24 28 63 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 2 Enter integer element to search 6 Search result : true Post order : 5 19 6 28 94 63 24 Pre order : 24 6 5 19 63 28 94 In order : 5 6 19 24 28 63 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 2 Enter integer element to search 7 Search result : false Post order : 5 19 6 28 94 63 24 Pre order : 24 6 5 19 63 28 94 In order : 5 6 19 24 28 63 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 3 Nodes = 7 Post order : 5 19 6 28 94 63 24 Pre order : 24 6 5 19 63 28 94 In order : 5 6 19 24 28 63 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 5 Tree Cleared Post order : Pre order : In order : Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 4 Empty status = true Post order : Pre order : In order : Do you want to continue (Type y or n) n
Related posts:
Spring Boot - Quick Start
Spring Security with Maven
Introduction to Spring Boot CLI
Spring Boot - Flyway Database
Hashtable trong java
An Intro to Spring Cloud Vault
Java Program to Implement Threaded Binary Tree
Transaction Propagation and Isolation in Spring @Transactional
Hamcrest Collections Cookbook
Guide to @JsonFormat in Jackson
Receive email using POP3
Java Program to Represent Graph Using Adjacency Matrix
RegEx for matching Date Pattern in Java
Using a Mutex Object in Java
Vòng lặp for, while, do-while trong Java
Generating Random Numbers in a Range in Java
Spring Boot - Enabling Swagger2
Returning Custom Status Codes from Spring Controllers
A Guide to HashSet in Java
Java Program to Implement Booth Algorithm
Giới thiệu java.io.tmpdir
Check if a String is a Palindrome in Java
Java Program to Implement Park-Miller Random Number Generation Algorithm
ThreadPoolTaskExecutor corePoolSize vs. maxPoolSize
Using JWT with Spring Security OAuth
Introduction to Apache Commons Text
Java Program to Implement Insertion Sort
Easy Ways to Write a Java InputStream to an OutputStream
Hướng dẫn Java Design Pattern – Facade
How To Serialize and Deserialize Enums with Jackson
Xử lý ngoại lệ trong Java (Exception Handling)
Java Program to Implement ConcurrentHashMap API