This is a Java Program to implement AA Tree. An AA tree is a form of balanced tree used for storing and retrieving ordered data efficiently. AA trees are named for Arne Andersson, their inventor. AA trees are a variation of the red-black tree, which in turn is an enhancement to the binary search tree.
Here is the source code of the Java program to implement AA Tree. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
/** * Java Program to Implement AA Tree */ import java.util.Scanner; import java.util.NoSuchElementException; /** Class AANode **/ class AANode { AANode left, right; int element, level; /** Constructor **/ public AANode() { this.element = 0; this.left = this; this.right = this; this.level = 0; } /** Constructor **/ public AANode(int ele) { this(ele, null, null); } /** Constructor **/ public AANode(int ele, AANode left, AANode right) { this.element = ele; this.left = left; this.right = right; this.level = 1; } } /** Class AATree **/ class AATree { private AANode root; private static AANode nil = new AANode(); /** Constructor **/ public AATree() { root = nil; } /** Function to check if tree is empty **/ public boolean isEmpty() { return root == nil; } /** Make the tree empty **/ public void clear() { root = nil; } /* Functions to insert data */ public void insert(int X) { root = insert(X, root); } private AANode insert(int X, AANode T) { if (T == nil) T = new AANode(X, nil, nil); else if ( X < T.element ) T.left = insert(X, T.left); else if ( X > T.element) T.right = insert(X, T.right); else return T; T = skew(T); T = split(T); return T; } /** Function Skew **/ private AANode skew(AANode T) { if (T == nil) return nil; else if (T.left == nil) return T; else if (T.left.level == T.level) { AANode L = T.left; T.left = L.right; L.right = T; return L; } else return T; } /** Function split **/ private AANode split(AANode T) { if (T == nil) return nil; else if (T.right == nil || T.right.right == nil) return T; else if (T.level == T.right.right.level) { AANode R = T.right; T.right = R.left; R.left = T; R.level = R.level + 1; return R; } else return T; } /** Function decrease key **/ private AANode decreaseLevel(AANode T) { int shouldBe = Math.min(T.left.level, T.right.level) + 1; if (shouldBe < T.level) { T.level = shouldBe; if (shouldBe < T.right.level) T.right.level = shouldBe; } return T; } /** Functions to count number of nodes **/ public int countNodes() { return countNodes(root); } private int countNodes(AANode r) { if (r == nil) return 0; else { int l = 1; l += countNodes(r.left); l += countNodes(r.right); return l; } } /** Functions to search for an element **/ public boolean search(int val) { return search(root, val); } private boolean search(AANode r, int val) { boolean found = false; while ((r != nil) && !found) { int rval = r.element; if (val < rval) r = r.left; else if (val > rval) r = r.right; else { found = true; break; } found = search(r, val); } return found; } /** Function for inorder traversal **/ public void inorder() { inorder(root); } private void inorder(AANode r) { if (r != nil) { inorder(r.left); System.out.print(r.element +" "); inorder(r.right); } } /** Function for preorder traversal **/ public void preorder() { preorder(root); } private void preorder(AANode r) { if (r != nil) { System.out.print(r.element +" "); preorder(r.left); preorder(r.right); } } /** Function for postorder traversal **/ public void postorder() { postorder(root); } private void postorder(AANode r) { if (r != nil) { postorder(r.left); postorder(r.right); System.out.print(r.element +" "); } } } /** Class AATree **/ public class AATreeTest { public static void main(String[] args) { Scanner scan = new Scanner(System.in); /** Creating object of AATree **/ AATree aat = new AATree(); System.out.println("AATree Tree Test\n"); char ch; /** Perform tree operations **/ do { System.out.println("\nAATree Operations\n"); System.out.println("1. insert "); System.out.println("2. search"); System.out.println("3. count nodes"); System.out.println("4. check empty"); System.out.println("5. clear"); int choice = scan.nextInt(); switch (choice) { case 1 : System.out.println("Enter integer element to insert"); aat.insert( scan.nextInt() ); break; case 2 : System.out.println("Enter integer element to search"); System.out.println("Search result : "+ aat.search( scan.nextInt() )); break; case 3 : System.out.println("Nodes = "+ aat.countNodes()); break; case 4 : System.out.println("Empty status = "+ aat.isEmpty()); break; case 5 : System.out.println("\nTree Cleared"); aat.clear(); break; default : System.out.println("Wrong Entry \n "); break; } /** Display tree **/ System.out.print("\nPost order : "); aat.postorder(); System.out.print("\nPre order : "); aat.preorder(); System.out.print("\nIn order : "); aat.inorder(); System.out.println("\nDo you want to continue (Type y or n) \n"); ch = scan.next().charAt(0); } while (ch == 'Y'|| ch == 'y'); } }
AATree Tree Test AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 4 Empty status = true Post order : Pre order : In order : Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 24 Post order : 24 Pre order : 24 In order : 24 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 5 Post order : 24 5 Pre order : 5 24 In order : 5 24 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 28 Post order : 5 28 24 Pre order : 24 5 28 In order : 5 24 28 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 6 Post order : 6 5 28 24 Pre order : 24 5 6 28 In order : 5 6 24 28 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 94 Post order : 6 5 94 28 24 Pre order : 24 5 6 28 94 In order : 5 6 24 28 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 63 Post order : 6 5 28 94 63 24 Pre order : 24 5 6 63 28 94 In order : 5 6 24 28 63 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 19 Post order : 5 19 6 28 94 63 24 Pre order : 24 6 5 19 63 28 94 In order : 5 6 19 24 28 63 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 2 Enter integer element to search 24 Search result : true Post order : 5 19 6 28 94 63 24 Pre order : 24 6 5 19 63 28 94 In order : 5 6 19 24 28 63 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 2 Enter integer element to search 6 Search result : true Post order : 5 19 6 28 94 63 24 Pre order : 24 6 5 19 63 28 94 In order : 5 6 19 24 28 63 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 2 Enter integer element to search 7 Search result : false Post order : 5 19 6 28 94 63 24 Pre order : 24 6 5 19 63 28 94 In order : 5 6 19 24 28 63 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 3 Nodes = 7 Post order : 5 19 6 28 94 63 24 Pre order : 24 6 5 19 63 28 94 In order : 5 6 19 24 28 63 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 5 Tree Cleared Post order : Pre order : In order : Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 4 Empty status = true Post order : Pre order : In order : Do you want to continue (Type y or n) n
Related posts:
Java Program to Implement Naor-Reingold Pseudo Random Function
Migrating from JUnit 4 to JUnit 5
Java Program to Implement Binomial Tree
Java Program to Implement Coppersmith Freivald’s Algorithm
Java program to Implement Tree Set
Limiting Query Results with JPA and Spring Data JPA
Apache Tiles Integration with Spring MVC
Thực thi nhiều tác vụ cùng lúc như thế nào trong Java?
Một số tính năng mới về xử lý ngoại lệ trong Java 7
Introduction to Spring Method Security
Control the Session with Spring Security
An Introduction to Java.util.Hashtable Class
Spring Boot - Code Structure
Hướng dẫn Java Design Pattern – Null Object
Setting the Java Version in Maven
Java Program to Implement Sparse Array
Form Validation with AngularJS and Spring MVC
Integer Constant Pool trong Java
Java Program to Test Using DFS Whether a Directed Graph is Weakly Connected or Not
Java Program to Construct an Expression Tree for an Postfix Expression
Java Program to Perform Encoding of a Message Using Matrix Multiplication
Java Program to Implement TreeSet API
Java Program to Find All Pairs Shortest Path
A Comparison Between Spring and Spring Boot
Spring’s RequestBody and ResponseBody Annotations
Java Program to Find k Numbers Closest to Median of S, Where S is a Set of n Numbers
Cachable Static Assets with Spring MVC
What is Thread-Safety and How to Achieve it?
Mix plain text and HTML content in a mail
Java Program to Implement Levenshtein Distance Computing Algorithm
HttpClient Connection Management
Java Program to Implement Hash Tables Chaining with List Heads