This is a Java Program to implement AA Tree. An AA tree is a form of balanced tree used for storing and retrieving ordered data efficiently. AA trees are named for Arne Andersson, their inventor. AA trees are a variation of the red-black tree, which in turn is an enhancement to the binary search tree.
Here is the source code of the Java program to implement AA Tree. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
/**
* Java Program to Implement AA Tree
*/
import java.util.Scanner;
import java.util.NoSuchElementException;
/** Class AANode **/
class AANode
{
AANode left, right;
int element, level;
/** Constructor **/
public AANode()
{
this.element = 0;
this.left = this;
this.right = this;
this.level = 0;
}
/** Constructor **/
public AANode(int ele)
{
this(ele, null, null);
}
/** Constructor **/
public AANode(int ele, AANode left, AANode right)
{
this.element = ele;
this.left = left;
this.right = right;
this.level = 1;
}
}
/** Class AATree **/
class AATree
{
private AANode root;
private static AANode nil = new AANode();
/** Constructor **/
public AATree()
{
root = nil;
}
/** Function to check if tree is empty **/
public boolean isEmpty()
{
return root == nil;
}
/** Make the tree empty **/
public void clear()
{
root = nil;
}
/* Functions to insert data */
public void insert(int X)
{
root = insert(X, root);
}
private AANode insert(int X, AANode T)
{
if (T == nil)
T = new AANode(X, nil, nil);
else if ( X < T.element )
T.left = insert(X, T.left);
else if ( X > T.element)
T.right = insert(X, T.right);
else
return T;
T = skew(T);
T = split(T);
return T;
}
/** Function Skew **/
private AANode skew(AANode T)
{
if (T == nil)
return nil;
else if (T.left == nil)
return T;
else if (T.left.level == T.level)
{
AANode L = T.left;
T.left = L.right;
L.right = T;
return L;
}
else
return T;
}
/** Function split **/
private AANode split(AANode T)
{
if (T == nil)
return nil;
else if (T.right == nil || T.right.right == nil)
return T;
else if (T.level == T.right.right.level)
{
AANode R = T.right;
T.right = R.left;
R.left = T;
R.level = R.level + 1;
return R;
}
else
return T;
}
/** Function decrease key **/
private AANode decreaseLevel(AANode T)
{
int shouldBe = Math.min(T.left.level, T.right.level) + 1;
if (shouldBe < T.level)
{
T.level = shouldBe;
if (shouldBe < T.right.level)
T.right.level = shouldBe;
}
return T;
}
/** Functions to count number of nodes **/
public int countNodes()
{
return countNodes(root);
}
private int countNodes(AANode r)
{
if (r == nil)
return 0;
else
{
int l = 1;
l += countNodes(r.left);
l += countNodes(r.right);
return l;
}
}
/** Functions to search for an element **/
public boolean search(int val)
{
return search(root, val);
}
private boolean search(AANode r, int val)
{
boolean found = false;
while ((r != nil) && !found)
{
int rval = r.element;
if (val < rval)
r = r.left;
else if (val > rval)
r = r.right;
else
{
found = true;
break;
}
found = search(r, val);
}
return found;
}
/** Function for inorder traversal **/
public void inorder()
{
inorder(root);
}
private void inorder(AANode r)
{
if (r != nil)
{
inorder(r.left);
System.out.print(r.element +" ");
inorder(r.right);
}
}
/** Function for preorder traversal **/
public void preorder()
{
preorder(root);
}
private void preorder(AANode r)
{
if (r != nil)
{
System.out.print(r.element +" ");
preorder(r.left);
preorder(r.right);
}
}
/** Function for postorder traversal **/
public void postorder()
{
postorder(root);
}
private void postorder(AANode r)
{
if (r != nil)
{
postorder(r.left);
postorder(r.right);
System.out.print(r.element +" ");
}
}
}
/** Class AATree **/
public class AATreeTest
{
public static void main(String[] args)
{
Scanner scan = new Scanner(System.in);
/** Creating object of AATree **/
AATree aat = new AATree();
System.out.println("AATree Tree Test\n");
char ch;
/** Perform tree operations **/
do
{
System.out.println("\nAATree Operations\n");
System.out.println("1. insert ");
System.out.println("2. search");
System.out.println("3. count nodes");
System.out.println("4. check empty");
System.out.println("5. clear");
int choice = scan.nextInt();
switch (choice)
{
case 1 :
System.out.println("Enter integer element to insert");
aat.insert( scan.nextInt() );
break;
case 2 :
System.out.println("Enter integer element to search");
System.out.println("Search result : "+ aat.search( scan.nextInt() ));
break;
case 3 :
System.out.println("Nodes = "+ aat.countNodes());
break;
case 4 :
System.out.println("Empty status = "+ aat.isEmpty());
break;
case 5 :
System.out.println("\nTree Cleared");
aat.clear();
break;
default :
System.out.println("Wrong Entry \n ");
break;
}
/** Display tree **/
System.out.print("\nPost order : ");
aat.postorder();
System.out.print("\nPre order : ");
aat.preorder();
System.out.print("\nIn order : ");
aat.inorder();
System.out.println("\nDo you want to continue (Type y or n) \n");
ch = scan.next().charAt(0);
} while (ch == 'Y'|| ch == 'y');
}
}
AATree Tree Test AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 4 Empty status = true Post order : Pre order : In order : Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 24 Post order : 24 Pre order : 24 In order : 24 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 5 Post order : 24 5 Pre order : 5 24 In order : 5 24 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 28 Post order : 5 28 24 Pre order : 24 5 28 In order : 5 24 28 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 6 Post order : 6 5 28 24 Pre order : 24 5 6 28 In order : 5 6 24 28 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 94 Post order : 6 5 94 28 24 Pre order : 24 5 6 28 94 In order : 5 6 24 28 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 63 Post order : 6 5 28 94 63 24 Pre order : 24 5 6 63 28 94 In order : 5 6 24 28 63 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 19 Post order : 5 19 6 28 94 63 24 Pre order : 24 6 5 19 63 28 94 In order : 5 6 19 24 28 63 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 2 Enter integer element to search 24 Search result : true Post order : 5 19 6 28 94 63 24 Pre order : 24 6 5 19 63 28 94 In order : 5 6 19 24 28 63 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 2 Enter integer element to search 6 Search result : true Post order : 5 19 6 28 94 63 24 Pre order : 24 6 5 19 63 28 94 In order : 5 6 19 24 28 63 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 2 Enter integer element to search 7 Search result : false Post order : 5 19 6 28 94 63 24 Pre order : 24 6 5 19 63 28 94 In order : 5 6 19 24 28 63 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 3 Nodes = 7 Post order : 5 19 6 28 94 63 24 Pre order : 24 6 5 19 63 28 94 In order : 5 6 19 24 28 63 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 5 Tree Cleared Post order : Pre order : In order : Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 4 Empty status = true Post order : Pre order : In order : Do you want to continue (Type y or n) n
Related posts:
Java Program to Find the Mode in a Data Set
Java CyclicBarrier vs CountDownLatch
HandlerAdapters in Spring MVC
A Guide to System.exit()
Java Program to Implement Merge Sort Algorithm on Linked List
JWT – Token-based Authentication trong Jersey 2.x
Java Program to Check whether Directed Graph is Connected using DFS
Java Program to Check if an UnDirected Graph is a Tree or Not Using DFS
Partition a List in Java
Java Program to Implement Randomized Binary Search Tree
How to Find an Element in a List with Java
Java Program to Implement Doubly Linked List
Java Program to Implement Meldable Heap
Database Migrations with Flyway
Java Program to Perform Arithmetic Operations on Numbers of Size
Introduction to Spring Data JPA
Java Program to Implement Gift Wrapping Algorithm in Two Dimensions
Setting a Request Timeout for a Spring REST API
Intro to Spring Boot Starters
Most commonly used String methods in Java
Transactions with Spring and JPA
Java Program to Implement Borwein Algorithm
Java Program to Check Whether an Undirected Graph Contains a Eulerian Cycle
Hướng dẫn Java Design Pattern – Bridge
Java Program to Implement ConcurrentHashMap API
Registration with Spring Security – Password Encoding
Send email with authentication
TreeSet và sử dụng Comparable, Comparator trong java
How To Serialize and Deserialize Enums with Jackson
Java Program to Perform Insertion in a BST
Java Program to Implement Depth-limited Search
Spring RequestMapping