This is a Java Program to implement AA Tree. An AA tree is a form of balanced tree used for storing and retrieving ordered data efficiently. AA trees are named for Arne Andersson, their inventor. AA trees are a variation of the red-black tree, which in turn is an enhancement to the binary search tree.
Here is the source code of the Java program to implement AA Tree. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
/** * Java Program to Implement AA Tree */ import java.util.Scanner; import java.util.NoSuchElementException; /** Class AANode **/ class AANode { AANode left, right; int element, level; /** Constructor **/ public AANode() { this.element = 0; this.left = this; this.right = this; this.level = 0; } /** Constructor **/ public AANode(int ele) { this(ele, null, null); } /** Constructor **/ public AANode(int ele, AANode left, AANode right) { this.element = ele; this.left = left; this.right = right; this.level = 1; } } /** Class AATree **/ class AATree { private AANode root; private static AANode nil = new AANode(); /** Constructor **/ public AATree() { root = nil; } /** Function to check if tree is empty **/ public boolean isEmpty() { return root == nil; } /** Make the tree empty **/ public void clear() { root = nil; } /* Functions to insert data */ public void insert(int X) { root = insert(X, root); } private AANode insert(int X, AANode T) { if (T == nil) T = new AANode(X, nil, nil); else if ( X < T.element ) T.left = insert(X, T.left); else if ( X > T.element) T.right = insert(X, T.right); else return T; T = skew(T); T = split(T); return T; } /** Function Skew **/ private AANode skew(AANode T) { if (T == nil) return nil; else if (T.left == nil) return T; else if (T.left.level == T.level) { AANode L = T.left; T.left = L.right; L.right = T; return L; } else return T; } /** Function split **/ private AANode split(AANode T) { if (T == nil) return nil; else if (T.right == nil || T.right.right == nil) return T; else if (T.level == T.right.right.level) { AANode R = T.right; T.right = R.left; R.left = T; R.level = R.level + 1; return R; } else return T; } /** Function decrease key **/ private AANode decreaseLevel(AANode T) { int shouldBe = Math.min(T.left.level, T.right.level) + 1; if (shouldBe < T.level) { T.level = shouldBe; if (shouldBe < T.right.level) T.right.level = shouldBe; } return T; } /** Functions to count number of nodes **/ public int countNodes() { return countNodes(root); } private int countNodes(AANode r) { if (r == nil) return 0; else { int l = 1; l += countNodes(r.left); l += countNodes(r.right); return l; } } /** Functions to search for an element **/ public boolean search(int val) { return search(root, val); } private boolean search(AANode r, int val) { boolean found = false; while ((r != nil) && !found) { int rval = r.element; if (val < rval) r = r.left; else if (val > rval) r = r.right; else { found = true; break; } found = search(r, val); } return found; } /** Function for inorder traversal **/ public void inorder() { inorder(root); } private void inorder(AANode r) { if (r != nil) { inorder(r.left); System.out.print(r.element +" "); inorder(r.right); } } /** Function for preorder traversal **/ public void preorder() { preorder(root); } private void preorder(AANode r) { if (r != nil) { System.out.print(r.element +" "); preorder(r.left); preorder(r.right); } } /** Function for postorder traversal **/ public void postorder() { postorder(root); } private void postorder(AANode r) { if (r != nil) { postorder(r.left); postorder(r.right); System.out.print(r.element +" "); } } } /** Class AATree **/ public class AATreeTest { public static void main(String[] args) { Scanner scan = new Scanner(System.in); /** Creating object of AATree **/ AATree aat = new AATree(); System.out.println("AATree Tree Test\n"); char ch; /** Perform tree operations **/ do { System.out.println("\nAATree Operations\n"); System.out.println("1. insert "); System.out.println("2. search"); System.out.println("3. count nodes"); System.out.println("4. check empty"); System.out.println("5. clear"); int choice = scan.nextInt(); switch (choice) { case 1 : System.out.println("Enter integer element to insert"); aat.insert( scan.nextInt() ); break; case 2 : System.out.println("Enter integer element to search"); System.out.println("Search result : "+ aat.search( scan.nextInt() )); break; case 3 : System.out.println("Nodes = "+ aat.countNodes()); break; case 4 : System.out.println("Empty status = "+ aat.isEmpty()); break; case 5 : System.out.println("\nTree Cleared"); aat.clear(); break; default : System.out.println("Wrong Entry \n "); break; } /** Display tree **/ System.out.print("\nPost order : "); aat.postorder(); System.out.print("\nPre order : "); aat.preorder(); System.out.print("\nIn order : "); aat.inorder(); System.out.println("\nDo you want to continue (Type y or n) \n"); ch = scan.next().charAt(0); } while (ch == 'Y'|| ch == 'y'); } }
AATree Tree Test AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 4 Empty status = true Post order : Pre order : In order : Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 24 Post order : 24 Pre order : 24 In order : 24 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 5 Post order : 24 5 Pre order : 5 24 In order : 5 24 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 28 Post order : 5 28 24 Pre order : 24 5 28 In order : 5 24 28 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 6 Post order : 6 5 28 24 Pre order : 24 5 6 28 In order : 5 6 24 28 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 94 Post order : 6 5 94 28 24 Pre order : 24 5 6 28 94 In order : 5 6 24 28 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 63 Post order : 6 5 28 94 63 24 Pre order : 24 5 6 63 28 94 In order : 5 6 24 28 63 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert 19 Post order : 5 19 6 28 94 63 24 Pre order : 24 6 5 19 63 28 94 In order : 5 6 19 24 28 63 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 2 Enter integer element to search 24 Search result : true Post order : 5 19 6 28 94 63 24 Pre order : 24 6 5 19 63 28 94 In order : 5 6 19 24 28 63 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 2 Enter integer element to search 6 Search result : true Post order : 5 19 6 28 94 63 24 Pre order : 24 6 5 19 63 28 94 In order : 5 6 19 24 28 63 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 2 Enter integer element to search 7 Search result : false Post order : 5 19 6 28 94 63 24 Pre order : 24 6 5 19 63 28 94 In order : 5 6 19 24 28 63 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 3 Nodes = 7 Post order : 5 19 6 28 94 63 24 Pre order : 24 6 5 19 63 28 94 In order : 5 6 19 24 28 63 94 Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 5 Tree Cleared Post order : Pre order : In order : Do you want to continue (Type y or n) y AATree Operations 1. insert 2. search 3. count nodes 4. check empty 5. clear 4 Empty status = true Post order : Pre order : In order : Do you want to continue (Type y or n) n
Related posts:
Practical Java Examples of the Big O Notation
Java Program to Find the Connected Components of an UnDirected Graph
Spring MVC Tutorial
Java Program to Find the Minimum value of Binary Search Tree
@Order in Spring
Java Program to Implement Stein GCD Algorithm
Java Program to Solve Knapsack Problem Using Dynamic Programming
wait() and notify() Methods in Java
Working with Tree Model Nodes in Jackson
Ép kiểu trong Java (Type casting)
Notify User of Login From New Device or Location
Concrete Class in Java
Java Program to Generate N Number of Passwords of Length M Each
JWT – Token-based Authentication trong Jersey 2.x
Collect a Java Stream to an Immutable Collection
A Guide to WatchService in Java NIO2
Spring 5 Functional Bean Registration
Hướng dẫn Java Design Pattern – Prototype
Format ZonedDateTime to String
Spring Boot - Introduction
Java Program to Check whether Graph is Biconnected
Giới thiệu thư viện Apache Commons Chain
Java Program to Implement Booth Algorithm
Java Program to Implement Sparse Array
Most commonly used String methods in Java
Jackson – Bidirectional Relationships
Java Program to Perform Optimal Paranthesization Using Dynamic Programming
Java Program to Implement Trie
Java Program to Implement Stack using Two Queues
Vòng lặp for, while, do-while trong Java
Java Program to Generate Randomized Sequence of Given Range of Numbers
Hướng dẫn kết nối cơ sở dữ liệu với Java JDBC