This is a Java Program to implement Threaded Binary Tree. A threaded binary tree makes it possible to traverse the values in the binary tree via a linear traversal that is more rapid than a recursive in-order traversal. It is also possible to discover the parent of a node from a threaded binary tree, without explicit use of parent pointers or a stack, albeit slowly. This can be useful where stack space is limited, or where a stack of parent pointers is unavailable (for finding the parent pointer via DFS).
Here is the source code of the Java program to implement Threaded Binary Tree. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
/**
* Java Program to Implement Threaded Binary Tree
**/
import java.util.Scanner;
/** Class TBSTNode **/
class TBSTNode
{
int ele;
TBSTNode left, right;
boolean leftThread, rightThread;
/** Constructor **/
public TBSTNode(int ele)
{
this(ele, null, null, true, true);
}
/** Constructor **/
public TBSTNode(boolean leftThread, boolean rightThread)
{
this.ele = Integer.MAX_VALUE;
this.left = this;
this.right = this;
this.leftThread = leftThread;
this.rightThread = rightThread;
}
/** Constructor **/
public TBSTNode(int ele, TBSTNode left, TBSTNode right, boolean leftThread, boolean rightThread)
{
this.ele = ele;
this.left = left;
this.right = right;
this.leftThread = leftThread;
this.rightThread = rightThread;
}
}
/** Class ThreadedBinarySearchTree **/
class ThreadedBinarySearchTree
{
private TBSTNode root;
/** Constructor **/
public ThreadedBinarySearchTree ()
{
root = new TBSTNode(true, false);
}
/** Function to clear tree **/
public void clear()
{
root = new TBSTNode(true, false);
}
/** Function to insert an element **/
public void insert(int ele)
{
TBSTNode ptr = findNode(root, ele);
/** element already present **/
if (ptr == null)
return;
if (ptr.ele < ele)
{
TBSTNode nptr = new TBSTNode(ele, ptr, ptr.right, true, true);
ptr.right = nptr;
ptr.rightThread = false;
}
else
{
TBSTNode nptr = new TBSTNode(ele, ptr.left, ptr, true, true);
ptr.left = nptr;
ptr.leftThread = false;
}
}
/** function to find node **/
public TBSTNode findNode(TBSTNode r, int ele)
{
if (r.ele < ele)
{
if (r.rightThread)
return r;
return findNode(r.right, ele);
}
else if (r.ele > ele)
{
if (r.leftThread)
return r;
return findNode(r.left, ele);
}
else
return null;
}
/** Function to search for an element **/
public boolean search(int ele)
{
return findNode(root, ele) == null;
}
/** Function to print tree **/
public void inOrder()
{
TBSTNode temp = root;
for (;;)
{
temp = insucc(temp);
if (temp == root)
break;
System.out.print(temp.ele +" ");
}
}
/** Function to get inorder successor **/
public TBSTNode insucc(TBSTNode tree)
{
TBSTNode temp;
temp = tree.right;
if (!tree.rightThread)
while (!temp.leftThread)
temp = temp.left;
return temp;
}
}
/** Class ThreadedBinarySearchTreeTest **/
public class ThreadedBinarySearchTreeTest
{
public static void main(String[] args)
{
Scanner scan = new Scanner(System.in);
/** Creating object of ThreadedBinarySearchTree **/
ThreadedBinarySearchTree tbst = new ThreadedBinarySearchTree();
System.out.println("Threaded Binary Search Tree Test\n");
char ch;
/** Perform tree operations **/
do
{
System.out.println("\nThreaded Binary Search Tree Operations\n");
System.out.println("1. insert ");
System.out.println("2. search");
System.out.println("3. clear");
int choice = scan.nextInt();
switch (choice)
{
case 1 :
System.out.println("Enter integer element to insert");
tbst.insert( scan.nextInt() );
break;
case 2 :
System.out.println("Enter integer element to search");
System.out.println("Search result : "+ tbst.search( scan.nextInt() ));
break;
case 3 :
System.out.println("\nTree Cleared\n");
tbst.clear();
break;
default :
System.out.println("Wrong Entry \n ");
break;
}
/** Display tree **/
System.out.print("\nTree = ");
tbst.inOrder();
System.out.println();
System.out.println("\nDo you want to continue (Type y or n) \n");
ch = scan.next().charAt(0);
} while (ch == 'Y'|| ch == 'y');
}
}
Threaded Binary Search Tree Test Threaded Binary Search Tree Operations 1. insert 2. search 3. clear 1 Enter integer element to insert 28 Tree = 28 Do you want to continue (Type y or n) y Threaded Binary Search Tree Operations 1. insert 2. search 3. clear 1 Enter integer element to insert 5 Tree = 5 28 Do you want to continue (Type y or n) y Threaded Binary Search Tree Operations 1. insert 2. search 3. clear 1 Enter integer element to insert 19 Tree = 5 19 28 Do you want to continue (Type y or n) y Threaded Binary Search Tree Operations 1. insert 2. search 3. clear 1 Enter integer element to insert 63 Tree = 5 19 28 63 Do you want to continue (Type y or n) y Threaded Binary Search Tree Operations 1. insert 2. search 3. clear 1 Enter integer element to insert 14 Tree = 5 14 19 28 63 Do you want to continue (Type y or n) y Threaded Binary Search Tree Operations 1. insert 2. search 3. clear 1 Enter integer element to insert 7 Tree = 5 7 14 19 28 63 Do you want to continue (Type y or n) y Threaded Binary Search Tree Operations 1. insert 2. search 3. clear 1 Enter integer element to insert 70 Tree = 5 7 14 19 28 63 70 Do you want to continue (Type y or n) y Threaded Binary Search Tree Operations 1. insert 2. search 3. clear 2 Enter integer element to search 24 Search result : false Tree = 5 7 14 19 28 63 70 Do you want to continue (Type y or n) y Threaded Binary Search Tree Operations 1. insert 2. search 3. clear 2 Enter integer element to search 28 Search result : true Tree = 5 7 14 19 28 63 70 Do you want to continue (Type y or n) y Threaded Binary Search Tree Operations 1. insert 2. search 3. clear 2 Enter integer element to search 14 Search result : true Tree = 5 7 14 19 28 63 70 Do you want to continue (Type y or n) y Threaded Binary Search Tree Operations 1. insert 2. search 3. clear 3 Tree Cleared Tree = Do you want to continue (Type y or n) n
Related posts:
Transactions with Spring and JPA
Java Program to Implement Sieve Of Eratosthenes
Entity To DTO Conversion for a Spring REST API
Spring Boot Tutorial – Bootstrap a Simple Application
Java Program to Find MST (Minimum Spanning Tree) using Prim’s Algorithm
Rest Web service: Filter và Interceptor với Jersey 2.x (P1)
Java Program to Implement Ternary Tree
Java Program to Implement Self Balancing Binary Search Tree
Java – Random Long, Float, Integer and Double
wait() and notify() Methods in Java
Collect a Java Stream to an Immutable Collection
Spring Boot Annotations
Java Program to Use Above Below Primitive to Test Whether Two Lines Intersect
Java Program to Implement Fermat Factorization Algorithm
Spring Security – Reset Your Password
Java Program to implement Dynamic Array
Java – Rename or Move a File
A Guide to BitSet in Java
Java Program to Describe the Representation of Graph using Adjacency Matrix
Immutable Map Implementations in Java
Java Optional as Return Type
Predicate trong Java 8
Apache Tiles Integration with Spring MVC
Java Program to Implement Control Table
Mệnh đề if-else trong java
Tránh lỗi NullPointerException trong Java như thế nào?
REST Web service: Tạo ứng dụng Java RESTful Client với Jersey Client 2.x
Introduction to the Java NIO Selector
Java Perform to a 2D FFT Inplace Given a Complex 2D Array
Java Program to Implement an Algorithm to Find the Global min Cut in a Graph
Database Migrations with Flyway
Java Program to Implement Doubly Linked List