This is a Java Program to implement Graham Scan Algorithm. Graham’s scan is a method of computing the convex hull of a finite set of points in the plane with time complexity O(n log n).
Here is the source code of the Java Program to Implement Graham Scan Algorithm to Find the Convex Hull. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a java program to implement Graham Scan Algorithm import java.util.Arrays; import java.util.Comparator; import java.util.Scanner; import java.util.Stack; class Point2D implements Comparable<Point2D> { public static final Comparator<Point2D> X_ORDER = new XOrder(); public static final Comparator<Point2D> Y_ORDER = new YOrder(); public static final Comparator<Point2D> R_ORDER = new ROrder(); public final Comparator<Point2D> POLAR_ORDER = new PolarOrder(); public final Comparator<Point2D> ATAN2_ORDER = new Atan2Order(); public final Comparator<Point2D> DISTANCE_TO_ORDER = new DistanceToOrder(); private final double x; // x coordinate private final double y; // y coordinate public Point2D(double x, double y) { if (Double.isInfinite(x) || Double.isInfinite(y)) throw new IllegalArgumentException("Coordinates must be finite"); if (Double.isNaN(x) || Double.isNaN(y)) throw new IllegalArgumentException("Coordinates cannot be NaN"); if (x == 0.0) x = 0.0; // convert -0.0 to +0.0 if (y == 0.0) y = 0.0; // convert -0.0 to +0.0 this.x = x; this.y = y; } public double x() { return x; } public double y() { return y; } public double r() { return Math.sqrt(x * x + y * y); } public double theta() { return Math.atan2(y, x); } private double angleTo(Point2D that) { double dx = that.x - this.x; double dy = that.y - this.y; return Math.atan2(dy, dx); } public static int ccw(Point2D a, Point2D b, Point2D c) { double area2 = (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x); if (area2 < 0) return -1; else if (area2 > 0) return +1; else return 0; } public static double area2(Point2D a, Point2D b, Point2D c) { return (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x); } public double distanceTo(Point2D that) { double dx = this.x - that.x; double dy = this.y - that.y; return Math.sqrt(dx * dx + dy * dy); } public double distanceSquaredTo(Point2D that) { double dx = this.x - that.x; double dy = this.y - that.y; return dx * dx + dy * dy; } public int compareTo(Point2D that) { if (this.y < that.y) return -1; if (this.y > that.y) return +1; if (this.x < that.x) return -1; if (this.x > that.x) return +1; return 0; } private static class XOrder implements Comparator<Point2D> { public int compare(Point2D p, Point2D q) { if (p.x < q.x) return -1; if (p.x > q.x) return +1; return 0; } } private static class YOrder implements Comparator<Point2D> { public int compare(Point2D p, Point2D q) { if (p.y < q.y) return -1; if (p.y > q.y) return +1; return 0; } } private static class ROrder implements Comparator<Point2D> { public int compare(Point2D p, Point2D q) { double delta = (p.x * p.x + p.y * p.y) - (q.x * q.x + q.y * q.y); if (delta < 0) return -1; if (delta > 0) return +1; return 0; } } private class Atan2Order implements Comparator<Point2D> { public int compare(Point2D q1, Point2D q2) { double angle1 = angleTo(q1); double angle2 = angleTo(q2); if (angle1 < angle2) return -1; else if (angle1 > angle2) return +1; else return 0; } } private class PolarOrder implements Comparator<Point2D> { public int compare(Point2D q1, Point2D q2) { double dx1 = q1.x - x; double dy1 = q1.y - y; double dx2 = q2.x - x; double dy2 = q2.y - y; if (dy1 >= 0 && dy2 < 0) return -1; // q1 above; q2 below else if (dy2 >= 0 && dy1 < 0) return +1; // q1 below; q2 above else if (dy1 == 0 && dy2 == 0) { // 3-collinear and horizontal if (dx1 >= 0 && dx2 < 0) return -1; else if (dx2 >= 0 && dx1 < 0) return +1; else return 0; } else return -ccw(Point2D.this, q1, q2); // both above or below } } private class DistanceToOrder implements Comparator<Point2D> { public int compare(Point2D p, Point2D q) { double dist1 = distanceSquaredTo(p); double dist2 = distanceSquaredTo(q); if (dist1 < dist2) return -1; else if (dist1 > dist2) return +1; else return 0; } } public boolean equals(Object other) { if (other == this) return true; if (other == null) return false; if (other.getClass() != this.getClass()) return false; Point2D that = (Point2D) other; return this.x == that.x && this.y == that.y; } public String toString() { return "(" + x + ", " + y + ")"; } public int hashCode() { int hashX = ((Double) x).hashCode(); int hashY = ((Double) y).hashCode(); return 31 * hashX + hashY; } } public class GrahamScan { private Stack<Point2D> hull = new Stack<Point2D>(); public GrahamScan(Point2D[] pts) { // defensive copy int N = pts.length; Point2D[] points = new Point2D[N]; for (int i = 0; i < N; i++) points[i] = pts[i]; Arrays.sort(points); Arrays.sort(points, 1, N, points[0].POLAR_ORDER); hull.push(points[0]); // p[0] is first extreme point int k1; for (k1 = 1; k1 < N; k1++) if (!points[0].equals(points[k1])) break; if (k1 == N) return; // all points equal int k2; for (k2 = k1 + 1; k2 < N; k2++) if (Point2D.ccw(points[0], points[k1], points[k2]) != 0) break; hull.push(points[k2 - 1]); // points[k2-1] is second extreme point for (int i = k2; i < N; i++) { Point2D top = hull.pop(); while (Point2D.ccw(hull.peek(), top, points[i]) <= 0) { top = hull.pop(); } hull.push(top); hull.push(points[i]); } assert isConvex(); } public Iterable<Point2D> hull() { Stack<Point2D> s = new Stack<Point2D>(); for (Point2D p : hull) s.push(p); return s; } private boolean isConvex() { int N = hull.size(); if (N <= 2) return true; Point2D[] points = new Point2D[N]; int n = 0; for (Point2D p : hull()) { points[n++] = p; } for (int i = 0; i < N; i++) { if (Point2D .ccw(points[i], points[(i + 1) % N], points[(i + 2) % N]) <= 0) { return false; } } return true; } // test client public static void main(String[] args) { System.out.println("Graham Scan Test"); Scanner sc = new Scanner(System.in); System.out.println("Enter the number of points"); int N = sc.nextInt(); Point2D[] points = new Point2D[N]; System.out.println("Enter the coordinates of each points: <x> <y>"); for (int i = 0; i < N; i++) { int x = sc.nextInt(); int y = sc.nextInt(); points[i] = new Point2D(x, y); } GrahamScan graham = new GrahamScan(points); System.out.println("The convex hull consists of following points: "); for (Point2D p : graham.hull()) System.out.println(p); sc.close(); } }
Output:
$ javac GrahamScan.java $ java GrahamScan Graham Scan Test Enter the number of points 5 Enter the coordinates of each points: <x> <y> 1 2 2 3 4 5 20 10 6 4 The convex hull consists of following points: (1.0, 2.0) (6.0, 4.0) (20.0, 10.0) (4.0, 5.0) Graham Scan Test Enter the number of points 5 Enter the coordinates of each points: <x> <y> 1 2 2 3 3 4 4 5 5 6 The convex hull consists of following points: (1.0, 2.0) (5.0, 6.0)
Related posts:
Display Auto-Configuration Report in Spring Boot
HttpClient 4 – Follow Redirects for POST
New Features in Java 12
Check if there is mail waiting
Sort a HashMap in Java
How to Manually Authenticate User with Spring Security
Spring Boot Actuator
XML Serialization and Deserialization with Jackson
The XOR Operator in Java
The Modulo Operator in Java
Java Program to Implement Jarvis Algorithm
Spring NoSuchBeanDefinitionException
Request a Delivery / Read Receipt in Javamail
Java Program to Implement Stack using Linked List
Các nguyên lý thiết kế hướng đối tượng – SOLID
Java Program to Implement Unrolled Linked List
Command-Line Arguments in Java
Hướng dẫn Java Design Pattern – Object Pool
Set Interface trong Java
Java Program to Implement Depth-limited Search
Lớp LinkedHashMap trong Java
Map to String Conversion in Java
Java Program to Solve the 0-1 Knapsack Problem
Static Content in Spring WebFlux
Spring Boot - Cloud Configuration Client
Quick Intro to Spring Cloud Configuration
A Guide to Iterator in Java
Java Program to Implement Queue using Linked List
Java Program to Implement HashMap API
Find the Registered Spring Security Filters
A Guide to Java HashMap
Java Program to Implement Gift Wrapping Algorithm in Two Dimensions