This is a Java Program to implement 3D KD Tree and Search an element. In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of binary space partitioning trees.
Here is the source code of the Java Program to Find Location of a Point Placed in Three Dimensions Using K-D Trees. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a java program to find the location of point in 3 dimensional KD Tree
import java.io.IOException;
import java.util.Scanner;
class KD3DNode
{
int axis;
double[] x;
int id;
boolean checked;
boolean orientation;
KD3DNode Parent;
KD3DNode Left;
KD3DNode Right;
public KD3DNode(double[] x0, int axis0)
{
x = new double[3];
axis = axis0;
for (int k = 0; k < 3; k++)
x[k] = x0[k];
Left = Right = Parent = null;
checked = false;
id = 0;
}
public KD3DNode FindParent(double[] x0)
{
KD3DNode parent = null;
KD3DNode next = this;
int split;
while (next != null)
{
split = next.axis;
parent = next;
if (x0[split] > next.x[split])
next = next.Right;
else
next = next.Left;
}
return parent;
}
public KD3DNode Insert(double[] p)
{
x = new double[3];
KD3DNode parent = FindParent(p);
if (equal(p, parent.x, 3) == true)
return null;
KD3DNode newNode = new KD3DNode(p,
parent.axis + 1 < 3 ? parent.axis + 1 : 0);
newNode.Parent = parent;
if (p[parent.axis] > parent.x[parent.axis])
{
parent.Right = newNode;
newNode.orientation = true; //
} else
{
parent.Left = newNode;
newNode.orientation = false; //
}
return newNode;
}
boolean equal(double[] x1, double[] x2, int dim)
{
for (int k = 0; k < dim; k++)
{
if (x1[k] != x2[k])
return false;
}
return true;
}
double distance2(double[] x1, double[] x2, int dim)
{
double S = 0;
for (int k = 0; k < dim; k++)
S += (x1[k] - x2[k]) * (x1[k] - x2[k]);
return S;
}
}
class KD3DTree
{
KD3DNode Root;
int TimeStart, TimeFinish;
int CounterFreq;
double d_min;
KD3DNode nearest_neighbour;
int KD_id;
int nList;
KD3DNode CheckedNodes[];
int checked_nodes;
KD3DNode List[];
double x_min[], x_max[];
boolean max_boundary[], min_boundary[];
int n_boundary;
public KD3DTree(int i)
{
Root = null;
KD_id = 1;
nList = 0;
List = new KD3DNode[i];
CheckedNodes = new KD3DNode[i];
max_boundary = new boolean[3];
min_boundary = new boolean[3];
x_min = new double[3];
x_max = new double[3];
}
public boolean add(double[] x)
{
if (nList >= 2000000 - 1)
return false; // can't add more points
if (Root == null)
{
Root = new KD3DNode(x, 0);
Root.id = KD_id++;
List[nList++] = Root;
} else
{
KD3DNode pNode;
if ((pNode = Root.Insert(x)) != null)
{
pNode.id = KD_id++;
List[nList++] = pNode;
}
}
return true;
}
public KD3DNode find_nearest(double[] x)
{
if (Root == null)
return null;
checked_nodes = 0;
KD3DNode parent = Root.FindParent(x);
nearest_neighbour = parent;
d_min = Root.distance2(x, parent.x, 3);
;
if (parent.equal(x, parent.x, 3) == true)
return nearest_neighbour;
search_parent(parent, x);
uncheck();
return nearest_neighbour;
}
public void check_subtree(KD3DNode node, double[] x)
{
if ((node == null) || node.checked)
return;
CheckedNodes[checked_nodes++] = node;
node.checked = true;
set_bounding_cube(node, x);
int dim = node.axis;
double d = node.x[dim] - x[dim];
if (d * d > d_min)
{
if (node.x[dim] > x[dim])
check_subtree(node.Left, x);
else
check_subtree(node.Right, x);
} else
{
check_subtree(node.Left, x);
check_subtree(node.Right, x);
}
}
public void set_bounding_cube(KD3DNode node, double[] x)
{
if (node == null)
return;
int d = 0;
double dx;
for (int k = 0; k < 3; k++)
{
dx = node.x[k] - x[k];
if (dx > 0)
{
dx *= dx;
if (!max_boundary[k])
{
if (dx > x_max[k])
x_max[k] = dx;
if (x_max[k] > d_min)
{
max_boundary[k] = true;
n_boundary++;
}
}
} else
{
dx *= dx;
if (!min_boundary[k])
{
if (dx > x_min[k])
x_min[k] = dx;
if (x_min[k] > d_min)
{
min_boundary[k] = true;
n_boundary++;
}
}
}
d += dx;
if (d > d_min)
return;
}
if (d < d_min)
{
d_min = d;
nearest_neighbour = node;
}
}
public KD3DNode search_parent(KD3DNode parent, double[] x)
{
for (int k = 0; k < 3; k++)
{
x_min[k] = x_max[k] = 0;
max_boundary[k] = min_boundary[k] = false; //
}
n_boundary = 0;
KD3DNode search_root = parent;
while (parent != null && (n_boundary != 3 * 3))
{
check_subtree(parent, x);
search_root = parent;
parent = parent.Parent;
}
return search_root;
}
public void uncheck()
{
for (int n = 0; n < checked_nodes; n++)
CheckedNodes[n].checked = false;
}
public void inorder()
{
inorder(Root);
}
private void inorder(KD3DNode root)
{
if (root != null)
{
inorder(root.Left);
System.out.print("(" + root.x[0] + ", " + root.x[1] + ", "
+ root.x[2] + ") ");
inorder(root.Right);
}
}
public void preorder()
{
preorder(Root);
}
private void preorder(KD3DNode root)
{
if (root != null)
{
System.out.print("(" + root.x[0] + ", " + root.x[1] + ", "
+ root.x[2] + ") ");
inorder(root.Left);
inorder(root.Right);
}
}
public void postorder()
{
postorder(Root);
}
private void postorder(KD3DNode root)
{
if (root != null)
{
inorder(root.Left);
inorder(root.Right);
System.out.print("(" + root.x[0] + ", " + root.x[1] + ", "
+ root.x[2] + ") ");
}
}
public void search(double x, double y, double z)
{
search(Root, x, y, z);
}
private void search(KD3DNode root, double x, double y, double z)
{
if (root != null)
{
search(root.Left, x, y, z);
if (x == root.x[0] && y == root.x[1] && z == root.x[2])
System.out.print("True (" + root.x[0] + ", " + root.x[1] + ", "
+ root.x[2] + ") ");
search(root.Right, x, y, z);
}
}
}
public class KD3D_Search
{
public static void main(String args[]) throws IOException
{
int numpoints = 5;
Scanner sc = new Scanner(System.in);
KD3DTree kdt = new KD3DTree(numpoints);
double x[] = new double[3];
x[0] = 0.0;
x[1] = 0.0;
x[2] = 0.0;
kdt.add(x);
x[0] = 3.3;
x[1] = 1.5;
x[2] = 4.0;
kdt.add(x);
x[0] = 4.7;
x[1] = 11.1;
x[2] = 2.3;
kdt.add(x);
x[0] = 5.0;
x[1] = 12.3;
x[2] = 5.7;
kdt.add(x);
x[0] = 5.1;
x[1] = 1.2;
x[2] = 4.2;
kdt.add(x);
System.out.println("Enter the co-ordinates of the point: <x> <y> <z>");
double x1 = sc.nextDouble();
double y1 = sc.nextDouble();
double z1 = sc.nextDouble();
kdt.search(x1, y1, z1);
System.out.println("\nInorder of 2D Kd tree: ");
kdt.inorder();
System.out.println("\nPreorder of 2D Kd tree: ");
kdt.preorder();
System.out.println("\npostorder of 2D Kd tree: ");
kdt.postorder();
sc.close();
}
}
Output:
$ javac KD3D_Search.java $ java KD3D_Search Enter the co-ordinates of the point: <x> <y> <z> 5.1 1.2 4.2 True (5.1, 1.2, 4.2) Inorder of 2D Kd tree: (0.0, 0.0, 0.0) (5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7) Preorder of 2D Kd tree: (0.0, 0.0, 0.0) (5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7) postorder of 2D Kd tree: (5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7) (0.0, 0.0, 0.0) Enter the co-ordinates of the point: <x> <y> <z> 5.1 5.2 5.3 False Inorder of 2D Kd tree: (0.0, 0.0, 0.0) (5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7) Preorder of 2D Kd tree: (0.0, 0.0, 0.0) (5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7) postorder of 2D Kd tree: (5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7) (0.0, 0.0, 0.0)
Related posts:
Java 8 Predicate Chain
Java Program to Apply Above-Below-on Test to Find the Position of a Point with respect to a Line
Java Program to Compute Cross Product of Two Vectors
Java Program to Find the Shortest Path Between Two Vertices Using Dijkstra’s Algorithm
Quick Guide to the Java StringTokenizer
A Guide to LinkedHashMap in Java
Java Program to Perform Insertion in a 2 Dimension K-D Tree
A Comparison Between Spring and Spring Boot
Java Program to find the peak element of an array using Binary Search approach
Getting Started with GraphQL and Spring Boot
Send an email using the SMTP protocol
JUnit 5 for Kotlin Developers
Java Program to Find the Vertex Connectivity of a Graph
Spring Boot - Database Handling
Java Program to Implement Merge Sort Algorithm on Linked List
Automatic Property Expansion with Spring Boot
Hướng dẫn sử dụng Java Annotation
Java Program to Implement LinkedHashMap API
Java equals() and hashCode() Contracts
Java Program to Delete a Particular Node in a Tree Without Using Recursion
Send email with JavaMail
Java Program to Implement Bloom Filter
Remove the First Element from a List
Java Program to Check if an UnDirected Graph is a Tree or Not Using DFS
Java Program to Check whether Graph is a Bipartite using BFS
Rate Limiting in Spring Cloud Netflix Zuul
Java Scanner hasNext() vs. hasNextLine()
Template Engines for Spring
Introduction to PCollections
Custom Cascading in Spring Data MongoDB
Calling Stored Procedures from Spring Data JPA Repositories
Spring 5 Functional Bean Registration