This is a Java Program to implement 3D KD Tree and Search an element. In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of binary space partitioning trees.
Here is the source code of the Java Program to Find Location of a Point Placed in Three Dimensions Using K-D Trees. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a java program to find the location of point in 3 dimensional KD Tree import java.io.IOException; import java.util.Scanner; class KD3DNode { int axis; double[] x; int id; boolean checked; boolean orientation; KD3DNode Parent; KD3DNode Left; KD3DNode Right; public KD3DNode(double[] x0, int axis0) { x = new double[3]; axis = axis0; for (int k = 0; k < 3; k++) x[k] = x0[k]; Left = Right = Parent = null; checked = false; id = 0; } public KD3DNode FindParent(double[] x0) { KD3DNode parent = null; KD3DNode next = this; int split; while (next != null) { split = next.axis; parent = next; if (x0[split] > next.x[split]) next = next.Right; else next = next.Left; } return parent; } public KD3DNode Insert(double[] p) { x = new double[3]; KD3DNode parent = FindParent(p); if (equal(p, parent.x, 3) == true) return null; KD3DNode newNode = new KD3DNode(p, parent.axis + 1 < 3 ? parent.axis + 1 : 0); newNode.Parent = parent; if (p[parent.axis] > parent.x[parent.axis]) { parent.Right = newNode; newNode.orientation = true; // } else { parent.Left = newNode; newNode.orientation = false; // } return newNode; } boolean equal(double[] x1, double[] x2, int dim) { for (int k = 0; k < dim; k++) { if (x1[k] != x2[k]) return false; } return true; } double distance2(double[] x1, double[] x2, int dim) { double S = 0; for (int k = 0; k < dim; k++) S += (x1[k] - x2[k]) * (x1[k] - x2[k]); return S; } } class KD3DTree { KD3DNode Root; int TimeStart, TimeFinish; int CounterFreq; double d_min; KD3DNode nearest_neighbour; int KD_id; int nList; KD3DNode CheckedNodes[]; int checked_nodes; KD3DNode List[]; double x_min[], x_max[]; boolean max_boundary[], min_boundary[]; int n_boundary; public KD3DTree(int i) { Root = null; KD_id = 1; nList = 0; List = new KD3DNode[i]; CheckedNodes = new KD3DNode[i]; max_boundary = new boolean[3]; min_boundary = new boolean[3]; x_min = new double[3]; x_max = new double[3]; } public boolean add(double[] x) { if (nList >= 2000000 - 1) return false; // can't add more points if (Root == null) { Root = new KD3DNode(x, 0); Root.id = KD_id++; List[nList++] = Root; } else { KD3DNode pNode; if ((pNode = Root.Insert(x)) != null) { pNode.id = KD_id++; List[nList++] = pNode; } } return true; } public KD3DNode find_nearest(double[] x) { if (Root == null) return null; checked_nodes = 0; KD3DNode parent = Root.FindParent(x); nearest_neighbour = parent; d_min = Root.distance2(x, parent.x, 3); ; if (parent.equal(x, parent.x, 3) == true) return nearest_neighbour; search_parent(parent, x); uncheck(); return nearest_neighbour; } public void check_subtree(KD3DNode node, double[] x) { if ((node == null) || node.checked) return; CheckedNodes[checked_nodes++] = node; node.checked = true; set_bounding_cube(node, x); int dim = node.axis; double d = node.x[dim] - x[dim]; if (d * d > d_min) { if (node.x[dim] > x[dim]) check_subtree(node.Left, x); else check_subtree(node.Right, x); } else { check_subtree(node.Left, x); check_subtree(node.Right, x); } } public void set_bounding_cube(KD3DNode node, double[] x) { if (node == null) return; int d = 0; double dx; for (int k = 0; k < 3; k++) { dx = node.x[k] - x[k]; if (dx > 0) { dx *= dx; if (!max_boundary[k]) { if (dx > x_max[k]) x_max[k] = dx; if (x_max[k] > d_min) { max_boundary[k] = true; n_boundary++; } } } else { dx *= dx; if (!min_boundary[k]) { if (dx > x_min[k]) x_min[k] = dx; if (x_min[k] > d_min) { min_boundary[k] = true; n_boundary++; } } } d += dx; if (d > d_min) return; } if (d < d_min) { d_min = d; nearest_neighbour = node; } } public KD3DNode search_parent(KD3DNode parent, double[] x) { for (int k = 0; k < 3; k++) { x_min[k] = x_max[k] = 0; max_boundary[k] = min_boundary[k] = false; // } n_boundary = 0; KD3DNode search_root = parent; while (parent != null && (n_boundary != 3 * 3)) { check_subtree(parent, x); search_root = parent; parent = parent.Parent; } return search_root; } public void uncheck() { for (int n = 0; n < checked_nodes; n++) CheckedNodes[n].checked = false; } public void inorder() { inorder(Root); } private void inorder(KD3DNode root) { if (root != null) { inorder(root.Left); System.out.print("(" + root.x[0] + ", " + root.x[1] + ", " + root.x[2] + ") "); inorder(root.Right); } } public void preorder() { preorder(Root); } private void preorder(KD3DNode root) { if (root != null) { System.out.print("(" + root.x[0] + ", " + root.x[1] + ", " + root.x[2] + ") "); inorder(root.Left); inorder(root.Right); } } public void postorder() { postorder(Root); } private void postorder(KD3DNode root) { if (root != null) { inorder(root.Left); inorder(root.Right); System.out.print("(" + root.x[0] + ", " + root.x[1] + ", " + root.x[2] + ") "); } } public void search(double x, double y, double z) { search(Root, x, y, z); } private void search(KD3DNode root, double x, double y, double z) { if (root != null) { search(root.Left, x, y, z); if (x == root.x[0] && y == root.x[1] && z == root.x[2]) System.out.print("True (" + root.x[0] + ", " + root.x[1] + ", " + root.x[2] + ") "); search(root.Right, x, y, z); } } } public class KD3D_Search { public static void main(String args[]) throws IOException { int numpoints = 5; Scanner sc = new Scanner(System.in); KD3DTree kdt = new KD3DTree(numpoints); double x[] = new double[3]; x[0] = 0.0; x[1] = 0.0; x[2] = 0.0; kdt.add(x); x[0] = 3.3; x[1] = 1.5; x[2] = 4.0; kdt.add(x); x[0] = 4.7; x[1] = 11.1; x[2] = 2.3; kdt.add(x); x[0] = 5.0; x[1] = 12.3; x[2] = 5.7; kdt.add(x); x[0] = 5.1; x[1] = 1.2; x[2] = 4.2; kdt.add(x); System.out.println("Enter the co-ordinates of the point: <x> <y> <z>"); double x1 = sc.nextDouble(); double y1 = sc.nextDouble(); double z1 = sc.nextDouble(); kdt.search(x1, y1, z1); System.out.println("\nInorder of 2D Kd tree: "); kdt.inorder(); System.out.println("\nPreorder of 2D Kd tree: "); kdt.preorder(); System.out.println("\npostorder of 2D Kd tree: "); kdt.postorder(); sc.close(); } }
Output:
$ javac KD3D_Search.java $ java KD3D_Search Enter the co-ordinates of the point: <x> <y> <z> 5.1 1.2 4.2 True (5.1, 1.2, 4.2) Inorder of 2D Kd tree: (0.0, 0.0, 0.0) (5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7) Preorder of 2D Kd tree: (0.0, 0.0, 0.0) (5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7) postorder of 2D Kd tree: (5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7) (0.0, 0.0, 0.0) Enter the co-ordinates of the point: <x> <y> <z> 5.1 5.2 5.3 False Inorder of 2D Kd tree: (0.0, 0.0, 0.0) (5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7) Preorder of 2D Kd tree: (0.0, 0.0, 0.0) (5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7) postorder of 2D Kd tree: (5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7) (0.0, 0.0, 0.0)
Related posts:
Sao chép các phần tử của một mảng sang mảng khác như thế nào?
Java Program to Find a Good Feedback Edge Set in a Graph
A Quick Guide to Spring Cloud Consul
Hướng dẫn Java Design Pattern – Chain of Responsibility
Registration – Activate a New Account by Email
Java Program to Implement Solovay Strassen Primality Test Algorithm
Jackson JSON Views
Java Program to Generate All Subsets of a Given Set in the Gray Code Order
Java IO vs NIO
The SpringJUnitConfig and SpringJUnitWebConfig Annotations in Spring 5
Transaction Propagation and Isolation in Spring @Transactional
Allow user:password in URL
Java Program to Implement IdentityHashMap API
Spring Security Basic Authentication
Java Program to Check whether Undirected Graph is Connected using DFS
Hashing a Password in Java
Remove HTML tags from a file to extract only the TEXT
Spring Boot - Internationalization
Java Program to Implement Sorted Circular Doubly Linked List
Using a Mutex Object in Java
Guide to PriorityBlockingQueue in Java
Converting a Stack Trace to a String in Java
Jackson – Change Name of Field
Convert Hex to ASCII in Java
Vector trong Java
Java Program to Implement Floyd-Warshall Algorithm
Java Program to Implement Skip List
Java Program to Check for balanced parenthesis by using Stacks
The “final” Keyword in Java
Immutable Objects in Java
Java Program to Implement Expression Tree
Java Program to Find the Mode in a Data Set