This is a Java Program to implement 3D KD Tree and Search an element. In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of binary space partitioning trees.
Here is the source code of the Java Program to Find Location of a Point Placed in Three Dimensions Using K-D Trees. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a java program to find the location of point in 3 dimensional KD Tree import java.io.IOException; import java.util.Scanner; class KD3DNode { int axis; double[] x; int id; boolean checked; boolean orientation; KD3DNode Parent; KD3DNode Left; KD3DNode Right; public KD3DNode(double[] x0, int axis0) { x = new double[3]; axis = axis0; for (int k = 0; k < 3; k++) x[k] = x0[k]; Left = Right = Parent = null; checked = false; id = 0; } public KD3DNode FindParent(double[] x0) { KD3DNode parent = null; KD3DNode next = this; int split; while (next != null) { split = next.axis; parent = next; if (x0[split] > next.x[split]) next = next.Right; else next = next.Left; } return parent; } public KD3DNode Insert(double[] p) { x = new double[3]; KD3DNode parent = FindParent(p); if (equal(p, parent.x, 3) == true) return null; KD3DNode newNode = new KD3DNode(p, parent.axis + 1 < 3 ? parent.axis + 1 : 0); newNode.Parent = parent; if (p[parent.axis] > parent.x[parent.axis]) { parent.Right = newNode; newNode.orientation = true; // } else { parent.Left = newNode; newNode.orientation = false; // } return newNode; } boolean equal(double[] x1, double[] x2, int dim) { for (int k = 0; k < dim; k++) { if (x1[k] != x2[k]) return false; } return true; } double distance2(double[] x1, double[] x2, int dim) { double S = 0; for (int k = 0; k < dim; k++) S += (x1[k] - x2[k]) * (x1[k] - x2[k]); return S; } } class KD3DTree { KD3DNode Root; int TimeStart, TimeFinish; int CounterFreq; double d_min; KD3DNode nearest_neighbour; int KD_id; int nList; KD3DNode CheckedNodes[]; int checked_nodes; KD3DNode List[]; double x_min[], x_max[]; boolean max_boundary[], min_boundary[]; int n_boundary; public KD3DTree(int i) { Root = null; KD_id = 1; nList = 0; List = new KD3DNode[i]; CheckedNodes = new KD3DNode[i]; max_boundary = new boolean[3]; min_boundary = new boolean[3]; x_min = new double[3]; x_max = new double[3]; } public boolean add(double[] x) { if (nList >= 2000000 - 1) return false; // can't add more points if (Root == null) { Root = new KD3DNode(x, 0); Root.id = KD_id++; List[nList++] = Root; } else { KD3DNode pNode; if ((pNode = Root.Insert(x)) != null) { pNode.id = KD_id++; List[nList++] = pNode; } } return true; } public KD3DNode find_nearest(double[] x) { if (Root == null) return null; checked_nodes = 0; KD3DNode parent = Root.FindParent(x); nearest_neighbour = parent; d_min = Root.distance2(x, parent.x, 3); ; if (parent.equal(x, parent.x, 3) == true) return nearest_neighbour; search_parent(parent, x); uncheck(); return nearest_neighbour; } public void check_subtree(KD3DNode node, double[] x) { if ((node == null) || node.checked) return; CheckedNodes[checked_nodes++] = node; node.checked = true; set_bounding_cube(node, x); int dim = node.axis; double d = node.x[dim] - x[dim]; if (d * d > d_min) { if (node.x[dim] > x[dim]) check_subtree(node.Left, x); else check_subtree(node.Right, x); } else { check_subtree(node.Left, x); check_subtree(node.Right, x); } } public void set_bounding_cube(KD3DNode node, double[] x) { if (node == null) return; int d = 0; double dx; for (int k = 0; k < 3; k++) { dx = node.x[k] - x[k]; if (dx > 0) { dx *= dx; if (!max_boundary[k]) { if (dx > x_max[k]) x_max[k] = dx; if (x_max[k] > d_min) { max_boundary[k] = true; n_boundary++; } } } else { dx *= dx; if (!min_boundary[k]) { if (dx > x_min[k]) x_min[k] = dx; if (x_min[k] > d_min) { min_boundary[k] = true; n_boundary++; } } } d += dx; if (d > d_min) return; } if (d < d_min) { d_min = d; nearest_neighbour = node; } } public KD3DNode search_parent(KD3DNode parent, double[] x) { for (int k = 0; k < 3; k++) { x_min[k] = x_max[k] = 0; max_boundary[k] = min_boundary[k] = false; // } n_boundary = 0; KD3DNode search_root = parent; while (parent != null && (n_boundary != 3 * 3)) { check_subtree(parent, x); search_root = parent; parent = parent.Parent; } return search_root; } public void uncheck() { for (int n = 0; n < checked_nodes; n++) CheckedNodes[n].checked = false; } public void inorder() { inorder(Root); } private void inorder(KD3DNode root) { if (root != null) { inorder(root.Left); System.out.print("(" + root.x[0] + ", " + root.x[1] + ", " + root.x[2] + ") "); inorder(root.Right); } } public void preorder() { preorder(Root); } private void preorder(KD3DNode root) { if (root != null) { System.out.print("(" + root.x[0] + ", " + root.x[1] + ", " + root.x[2] + ") "); inorder(root.Left); inorder(root.Right); } } public void postorder() { postorder(Root); } private void postorder(KD3DNode root) { if (root != null) { inorder(root.Left); inorder(root.Right); System.out.print("(" + root.x[0] + ", " + root.x[1] + ", " + root.x[2] + ") "); } } public void search(double x, double y, double z) { search(Root, x, y, z); } private void search(KD3DNode root, double x, double y, double z) { if (root != null) { search(root.Left, x, y, z); if (x == root.x[0] && y == root.x[1] && z == root.x[2]) System.out.print("True (" + root.x[0] + ", " + root.x[1] + ", " + root.x[2] + ") "); search(root.Right, x, y, z); } } } public class KD3D_Search { public static void main(String args[]) throws IOException { int numpoints = 5; Scanner sc = new Scanner(System.in); KD3DTree kdt = new KD3DTree(numpoints); double x[] = new double[3]; x[0] = 0.0; x[1] = 0.0; x[2] = 0.0; kdt.add(x); x[0] = 3.3; x[1] = 1.5; x[2] = 4.0; kdt.add(x); x[0] = 4.7; x[1] = 11.1; x[2] = 2.3; kdt.add(x); x[0] = 5.0; x[1] = 12.3; x[2] = 5.7; kdt.add(x); x[0] = 5.1; x[1] = 1.2; x[2] = 4.2; kdt.add(x); System.out.println("Enter the co-ordinates of the point: <x> <y> <z>"); double x1 = sc.nextDouble(); double y1 = sc.nextDouble(); double z1 = sc.nextDouble(); kdt.search(x1, y1, z1); System.out.println("\nInorder of 2D Kd tree: "); kdt.inorder(); System.out.println("\nPreorder of 2D Kd tree: "); kdt.preorder(); System.out.println("\npostorder of 2D Kd tree: "); kdt.postorder(); sc.close(); } }
Output:
$ javac KD3D_Search.java $ java KD3D_Search Enter the co-ordinates of the point: <x> <y> <z> 5.1 1.2 4.2 True (5.1, 1.2, 4.2) Inorder of 2D Kd tree: (0.0, 0.0, 0.0) (5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7) Preorder of 2D Kd tree: (0.0, 0.0, 0.0) (5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7) postorder of 2D Kd tree: (5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7) (0.0, 0.0, 0.0) Enter the co-ordinates of the point: <x> <y> <z> 5.1 5.2 5.3 False Inorder of 2D Kd tree: (0.0, 0.0, 0.0) (5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7) Preorder of 2D Kd tree: (0.0, 0.0, 0.0) (5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7) postorder of 2D Kd tree: (5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7) (0.0, 0.0, 0.0)
Related posts:
Java 8 Streams peek() API
Jackson Annotation Examples
Java Program to Perform Insertion in a BST
Using Java Assertions
Java Program to Implement Gale Shapley Algorithm
Lấy ngày giờ hiện tại trong Java
Loại bỏ các phần tử trùng trong một ArrayList như thế nào trong Java 8?
Spring Boot - Eureka Server
How To Serialize and Deserialize Enums with Jackson
The Spring @Controller and @RestController Annotations
Guide to PriorityBlockingQueue in Java
Deploy a Spring Boot App to Azure
Spring Boot Application as a Service
Dynamic Proxies in Java
String Processing with Apache Commons Lang 3
Java Program to Implement Segment Tree
Jackson – JsonMappingException (No serializer found for class)
Generic Constructors in Java
Biến trong java
Java String to InputStream
Java – Random Long, Float, Integer and Double
Spring Boot - Rest Template
Refactoring Design Pattern với tính năng mới trong Java 8
Programmatic Transaction Management in Spring
Hướng dẫn Java Design Pattern – Mediator
Spring WebFlux Filters
Java Program to Check whether Undirected Graph is Connected using BFS
A Guide to @RepeatedTest in Junit 5
Introduction to Using FreeMarker in Spring MVC
Java Program to Implement String Matching Using Vectors
Java Program to Implement ConcurrentSkipListMap API
Versioning a REST API