Java Program for Douglas-Peucker Algorithm Implementation

This is a Java Program to implement Douglas-Peucker Algorithm. The Ramer–Douglas–Peucker algorithm (RDP) is an algorithm for reducing the number of points in a curve that is approximated by a series of points. This algorithm is also known under the names Douglas–Peucker algorithm, iterative end-point fit algorithm and split-and-merge algorithm. The purpose of the algorithm is, given a curve composed of line segments, to find a similar curve with fewer points. The algorithm defines ‘dissimilar’ based on the maximum distance between the original curve and the simplified curve. The simplified curve consists of a subset of the points that defined the original curve.

Here is the source code of the Java Program for Douglas-Peucker Algorithm Implementation. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.

//This is a java program to filter out points using Douglas Peucker Algorithm
import static java.lang.Math.abs;
import static java.lang.Math.pow;
import static java.lang.Math.sqrt;
 
import java.util.Random;
 
class RamerDouglasPeuckerFilter
{
 
    private double epsilon;
 
    public RamerDouglasPeuckerFilter(double epsilon)
    {
        if (epsilon <= 0)
        {
            throw new IllegalArgumentException("Epsilon nust be > 0");
        }
        this.epsilon = epsilon;
    }
 
    public double[] filter(double[] data)
    {
        return ramerDouglasPeuckerFunction(data, 0, data.length - 1);
    }
 
    public double getEpsilon()
    {
        return epsilon;
    }
 
    protected double[] ramerDouglasPeuckerFunction(double[] points,
            int startIndex, int endIndex)
    {
        double dmax = 0;
        int idx = 0;
        double a = endIndex - startIndex;
        double b = points[endIndex] - points[startIndex];
        double c = -(b * startIndex - a * points[startIndex]);
        double norm = sqrt(pow(a, 2) + pow(b, 2));
        for (int i = startIndex + 1; i < endIndex; i++)
        {
            double distance = abs(b * i - a * points[i] + c) / norm;
            if (distance > dmax)
            {
                idx = i;
                dmax = distance;
            }
        }
        if (dmax >= epsilon)
        {
            double[] recursiveResult1 = ramerDouglasPeuckerFunction(points,
                    startIndex, idx);
            double[] recursiveResult2 = ramerDouglasPeuckerFunction(points,
                    idx, endIndex);
            double[] result = new double[(recursiveResult1.length - 1)
                    + recursiveResult2.length];
            System.arraycopy(recursiveResult1, 0, result, 0,
                    recursiveResult1.length - 1);
            System.arraycopy(recursiveResult2, 0, result,
                    recursiveResult1.length - 1, recursiveResult2.length);
            return result;
        } else
        {
            return new double[] { points[startIndex], points[endIndex] };
        }
    }
 
    public void setEpsilon(double epsilon)
    {
        if (epsilon <= 0)
        {
            throw new IllegalArgumentException("Epsilon nust be > 0");
        }
        this.epsilon = epsilon;
    }
 
}
 
public class Douglas_Peucker_Algorithm
{
    public static void main(String args[])
    {
        Random random = new Random();
        double[] points = new double[20];
        double[] fpoints;
        for (int i = 0; i < points.length; i++)
            points[i] = random.nextInt(10);
        RamerDouglasPeuckerFilter rdpf = new RamerDouglasPeuckerFilter(1);
        fpoints = rdpf.filter(points);
 
        System.out.println("Orginal points");
        for (int i = 0; i < points.length; i++)
            System.out.print(points[i] + " ");
 
        System.out.println("\nFiltered points");
        for (int i = 0; i < fpoints.length; i++)
            System.out.print(fpoints[i] + " ");       
    }
}

Output:

$ javac Douglas_Peucker_Algorithm.java
$ java Douglas_Peucker_Algorithm
 
Orginal points
5.0 0.0 8.0 7.0 2.0 9.0 4.0 4.0 0.0 7.0 4.0 1.0 9.0 6.0 8.0 9.0 6.0 6.0 9.0 6.0 
Filtered points
5.0 0.0 8.0 2.0 9.0 0.0 7.0 1.0 9.0 6.0 9.0 6.0 9.0 6.0

Related posts:

Java Program to Perform Insertion in a BST
Apache Commons Collections MapUtils
Hướng dẫn Java Design Pattern – Interpreter
Java Program to Implement Hash Tables with Linear Probing
Java Program to Perform Preorder Recursive Traversal of a Given Binary Tree
Guide to BufferedReader
New Features in Java 14
HashSet trong Java hoạt động như thế nào?
Java Program to Implement Bit Array
Lớp LinkedHashMap trong Java
Java Program to Find Nearest Neighbor Using Linear Search
Java Program to Use the Bellman-Ford Algorithm to Find the Shortest Path
Hướng dẫn Java Design Pattern – Facade
Adding Shutdown Hooks for JVM Applications
Hướng dẫn Java Design Pattern – Mediator
Java Program to Check if a Given Binary Tree is an AVL Tree or Not
Java Program to Implement Levenshtein Distance Computing Algorithm
Form Validation with AngularJS and Spring MVC
Custom Cascading in Spring Data MongoDB
Hướng dẫn kết nối cơ sở dữ liệu với Java JDBC
Guide to Escaping Characters in Java RegExps
REST Web service: Tạo ứng dụng Java RESTful Client với Jersey Client 2.x
Performance Difference Between save() and saveAll() in Spring Data
Reactive WebSockets with Spring 5
Format ZonedDateTime to String
Java Program to Use Above Below Primitive to Test Whether Two Lines Intersect
Java Program to Implement Circular Singly Linked List
Sử dụng Fork/Join Framework với ForkJoinPool trong Java
Java Program to find the maximum subarray sum O(n^2) time(naive method)
Uploading MultipartFile with Spring RestTemplate
So sánh Array và ArrayList trong Java
Java Program to Implement Interpolation Search Algorithm