Java Program for Douglas-Peucker Algorithm Implementation

This is a Java Program to implement Douglas-Peucker Algorithm. The Ramer–Douglas–Peucker algorithm (RDP) is an algorithm for reducing the number of points in a curve that is approximated by a series of points. This algorithm is also known under the names Douglas–Peucker algorithm, iterative end-point fit algorithm and split-and-merge algorithm. The purpose of the algorithm is, given a curve composed of line segments, to find a similar curve with fewer points. The algorithm defines ‘dissimilar’ based on the maximum distance between the original curve and the simplified curve. The simplified curve consists of a subset of the points that defined the original curve.

Here is the source code of the Java Program for Douglas-Peucker Algorithm Implementation. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.

//This is a java program to filter out points using Douglas Peucker Algorithm
import static java.lang.Math.abs;
import static java.lang.Math.pow;
import static java.lang.Math.sqrt;
 
import java.util.Random;
 
class RamerDouglasPeuckerFilter
{
 
    private double epsilon;
 
    public RamerDouglasPeuckerFilter(double epsilon)
    {
        if (epsilon <= 0)
        {
            throw new IllegalArgumentException("Epsilon nust be > 0");
        }
        this.epsilon = epsilon;
    }
 
    public double[] filter(double[] data)
    {
        return ramerDouglasPeuckerFunction(data, 0, data.length - 1);
    }
 
    public double getEpsilon()
    {
        return epsilon;
    }
 
    protected double[] ramerDouglasPeuckerFunction(double[] points,
            int startIndex, int endIndex)
    {
        double dmax = 0;
        int idx = 0;
        double a = endIndex - startIndex;
        double b = points[endIndex] - points[startIndex];
        double c = -(b * startIndex - a * points[startIndex]);
        double norm = sqrt(pow(a, 2) + pow(b, 2));
        for (int i = startIndex + 1; i < endIndex; i++)
        {
            double distance = abs(b * i - a * points[i] + c) / norm;
            if (distance > dmax)
            {
                idx = i;
                dmax = distance;
            }
        }
        if (dmax >= epsilon)
        {
            double[] recursiveResult1 = ramerDouglasPeuckerFunction(points,
                    startIndex, idx);
            double[] recursiveResult2 = ramerDouglasPeuckerFunction(points,
                    idx, endIndex);
            double[] result = new double[(recursiveResult1.length - 1)
                    + recursiveResult2.length];
            System.arraycopy(recursiveResult1, 0, result, 0,
                    recursiveResult1.length - 1);
            System.arraycopy(recursiveResult2, 0, result,
                    recursiveResult1.length - 1, recursiveResult2.length);
            return result;
        } else
        {
            return new double[] { points[startIndex], points[endIndex] };
        }
    }
 
    public void setEpsilon(double epsilon)
    {
        if (epsilon <= 0)
        {
            throw new IllegalArgumentException("Epsilon nust be > 0");
        }
        this.epsilon = epsilon;
    }
 
}
 
public class Douglas_Peucker_Algorithm
{
    public static void main(String args[])
    {
        Random random = new Random();
        double[] points = new double[20];
        double[] fpoints;
        for (int i = 0; i < points.length; i++)
            points[i] = random.nextInt(10);
        RamerDouglasPeuckerFilter rdpf = new RamerDouglasPeuckerFilter(1);
        fpoints = rdpf.filter(points);
 
        System.out.println("Orginal points");
        for (int i = 0; i < points.length; i++)
            System.out.print(points[i] + " ");
 
        System.out.println("\nFiltered points");
        for (int i = 0; i < fpoints.length; i++)
            System.out.print(fpoints[i] + " ");       
    }
}

Output:

$ javac Douglas_Peucker_Algorithm.java
$ java Douglas_Peucker_Algorithm
 
Orginal points
5.0 0.0 8.0 7.0 2.0 9.0 4.0 4.0 0.0 7.0 4.0 1.0 9.0 6.0 8.0 9.0 6.0 6.0 9.0 6.0 
Filtered points
5.0 0.0 8.0 2.0 9.0 0.0 7.0 1.0 9.0 6.0 9.0 6.0 9.0 6.0

Related posts:

Java Program to Find Inverse of a Matrix
Java Program to Implement ConcurrentSkipListMap API
Java Program to Find Basis and Dimension of a Matrix
Java Program to Implement the Edmond’s Algorithm for Maximum Cardinality Matching
Java Program to Check whether Directed Graph is Connected using BFS
Java Streams vs Vavr Streams
Java Program to Implement Warshall Algorithm
How to Store Duplicate Keys in a Map in Java?
Creating a Generic Array in Java
Toán tử instanceof trong java
Java Program to Implement Dijkstra’s Algorithm using Set
Làm thế nào tạo instance của một class mà không gọi từ khóa new?
Java Program to Generate Random Numbers Using Probability Distribution Function
Interface trong Java 8 – Default method và Static method
Read an Outlook MSG file
Spring Boot - Zuul Proxy Server and Routing
Converting Between a List and a Set in Java
Vấn đề Nhà sản xuất (Producer) – Người tiêu dùng (Consumer) và đồng bộ hóa các luồng trong Java
Java Program to Implement Quick Sort with Given Complexity Constraint
How to Get the Last Element of a Stream in Java?
Instance Profile Credentials using Spring Cloud
Java Program to Implement a Binary Search Algorithm for a Specific Search Sequence
Java Copy Constructor
Bootstrap a Web Application with Spring 5
Java Program to Implement Rope
Creating a Custom Starter with Spring Boot
Test a REST API with Java
Transaction Propagation and Isolation in Spring @Transactional
Java Program to Implement First Fit Decreasing for 1-D Objects and M Bins
Hướng dẫn Java Design Pattern – Visitor
Difference Between Wait and Sleep in Java
Converting Between Byte Arrays and Hexadecimal Strings in Java