Java Program for Douglas-Peucker Algorithm Implementation

This is a Java Program to implement Douglas-Peucker Algorithm. The Ramer–Douglas–Peucker algorithm (RDP) is an algorithm for reducing the number of points in a curve that is approximated by a series of points. This algorithm is also known under the names Douglas–Peucker algorithm, iterative end-point fit algorithm and split-and-merge algorithm. The purpose of the algorithm is, given a curve composed of line segments, to find a similar curve with fewer points. The algorithm defines ‘dissimilar’ based on the maximum distance between the original curve and the simplified curve. The simplified curve consists of a subset of the points that defined the original curve.

Here is the source code of the Java Program for Douglas-Peucker Algorithm Implementation. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.

//This is a java program to filter out points using Douglas Peucker Algorithm
import static java.lang.Math.abs;
import static java.lang.Math.pow;
import static java.lang.Math.sqrt;
 
import java.util.Random;
 
class RamerDouglasPeuckerFilter
{
 
    private double epsilon;
 
    public RamerDouglasPeuckerFilter(double epsilon)
    {
        if (epsilon <= 0)
        {
            throw new IllegalArgumentException("Epsilon nust be > 0");
        }
        this.epsilon = epsilon;
    }
 
    public double[] filter(double[] data)
    {
        return ramerDouglasPeuckerFunction(data, 0, data.length - 1);
    }
 
    public double getEpsilon()
    {
        return epsilon;
    }
 
    protected double[] ramerDouglasPeuckerFunction(double[] points,
            int startIndex, int endIndex)
    {
        double dmax = 0;
        int idx = 0;
        double a = endIndex - startIndex;
        double b = points[endIndex] - points[startIndex];
        double c = -(b * startIndex - a * points[startIndex]);
        double norm = sqrt(pow(a, 2) + pow(b, 2));
        for (int i = startIndex + 1; i < endIndex; i++)
        {
            double distance = abs(b * i - a * points[i] + c) / norm;
            if (distance > dmax)
            {
                idx = i;
                dmax = distance;
            }
        }
        if (dmax >= epsilon)
        {
            double[] recursiveResult1 = ramerDouglasPeuckerFunction(points,
                    startIndex, idx);
            double[] recursiveResult2 = ramerDouglasPeuckerFunction(points,
                    idx, endIndex);
            double[] result = new double[(recursiveResult1.length - 1)
                    + recursiveResult2.length];
            System.arraycopy(recursiveResult1, 0, result, 0,
                    recursiveResult1.length - 1);
            System.arraycopy(recursiveResult2, 0, result,
                    recursiveResult1.length - 1, recursiveResult2.length);
            return result;
        } else
        {
            return new double[] { points[startIndex], points[endIndex] };
        }
    }
 
    public void setEpsilon(double epsilon)
    {
        if (epsilon <= 0)
        {
            throw new IllegalArgumentException("Epsilon nust be > 0");
        }
        this.epsilon = epsilon;
    }
 
}
 
public class Douglas_Peucker_Algorithm
{
    public static void main(String args[])
    {
        Random random = new Random();
        double[] points = new double[20];
        double[] fpoints;
        for (int i = 0; i < points.length; i++)
            points[i] = random.nextInt(10);
        RamerDouglasPeuckerFilter rdpf = new RamerDouglasPeuckerFilter(1);
        fpoints = rdpf.filter(points);
 
        System.out.println("Orginal points");
        for (int i = 0; i < points.length; i++)
            System.out.print(points[i] + " ");
 
        System.out.println("\nFiltered points");
        for (int i = 0; i < fpoints.length; i++)
            System.out.print(fpoints[i] + " ");       
    }
}

Output:

$ javac Douglas_Peucker_Algorithm.java
$ java Douglas_Peucker_Algorithm
 
Orginal points
5.0 0.0 8.0 7.0 2.0 9.0 4.0 4.0 0.0 7.0 4.0 1.0 9.0 6.0 8.0 9.0 6.0 6.0 9.0 6.0 
Filtered points
5.0 0.0 8.0 2.0 9.0 0.0 7.0 1.0 9.0 6.0 9.0 6.0 9.0 6.0

Related posts:

Spring Security Registration – Resend Verification Email
Java Program to Check if any Graph is Possible to be Constructed for a Given Degree Sequence
Hướng dẫn Java Design Pattern – Composite
Các chương trình minh họa sử dụng Cấu trúc điều khiển trong Java
Java Program to Perform Search in a BST
Java Program to Create a Minimal Set of All Edges Whose Addition will Convert it to a Strongly Conne...
Weak References in Java
How to Get the Last Element of a Stream in Java?
Java Program to Perform the Sorting Using Counting Sort
Java Program for Topological Sorting in Graphs
Mệnh đề if-else trong java
Java Program to implement Bit Set
Guide to System.gc()
Validations for Enum Types
Convert Hex to ASCII in Java
Java Program to Implement Repeated Squaring Algorithm
Netflix Archaius with Various Database Configurations
Java Program to Implement LinkedBlockingDeque API
Java Program to Solve any Linear Equation in One Variable
Chuyển đổi Array sang ArrayList và ngược lại
Quick Guide to Spring MVC with Velocity
Apache Commons Collections MapUtils
How to Define a Spring Boot Filter?
Java Program to find the peak element of an array using Binary Search approach
Interface trong Java 8 – Default method và Static method
Java Program to Implement Unrolled Linked List
Apache Commons Collections BidiMap
Set Interface trong Java
The Modulo Operator in Java
Java Program to Perform Postorder Non-Recursive Traversal of a Given Binary Tree
Java Program to Implement the MD5 Algorithm
Java Program to Implement Iterative Deepening