Java Program for Douglas-Peucker Algorithm Implementation

This is a Java Program to implement Douglas-Peucker Algorithm. The Ramer–Douglas–Peucker algorithm (RDP) is an algorithm for reducing the number of points in a curve that is approximated by a series of points. This algorithm is also known under the names Douglas–Peucker algorithm, iterative end-point fit algorithm and split-and-merge algorithm. The purpose of the algorithm is, given a curve composed of line segments, to find a similar curve with fewer points. The algorithm defines ‘dissimilar’ based on the maximum distance between the original curve and the simplified curve. The simplified curve consists of a subset of the points that defined the original curve.

Here is the source code of the Java Program for Douglas-Peucker Algorithm Implementation. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.

//This is a java program to filter out points using Douglas Peucker Algorithm
import static java.lang.Math.abs;
import static java.lang.Math.pow;
import static java.lang.Math.sqrt;
 
import java.util.Random;
 
class RamerDouglasPeuckerFilter
{
 
    private double epsilon;
 
    public RamerDouglasPeuckerFilter(double epsilon)
    {
        if (epsilon <= 0)
        {
            throw new IllegalArgumentException("Epsilon nust be > 0");
        }
        this.epsilon = epsilon;
    }
 
    public double[] filter(double[] data)
    {
        return ramerDouglasPeuckerFunction(data, 0, data.length - 1);
    }
 
    public double getEpsilon()
    {
        return epsilon;
    }
 
    protected double[] ramerDouglasPeuckerFunction(double[] points,
            int startIndex, int endIndex)
    {
        double dmax = 0;
        int idx = 0;
        double a = endIndex - startIndex;
        double b = points[endIndex] - points[startIndex];
        double c = -(b * startIndex - a * points[startIndex]);
        double norm = sqrt(pow(a, 2) + pow(b, 2));
        for (int i = startIndex + 1; i < endIndex; i++)
        {
            double distance = abs(b * i - a * points[i] + c) / norm;
            if (distance > dmax)
            {
                idx = i;
                dmax = distance;
            }
        }
        if (dmax >= epsilon)
        {
            double[] recursiveResult1 = ramerDouglasPeuckerFunction(points,
                    startIndex, idx);
            double[] recursiveResult2 = ramerDouglasPeuckerFunction(points,
                    idx, endIndex);
            double[] result = new double[(recursiveResult1.length - 1)
                    + recursiveResult2.length];
            System.arraycopy(recursiveResult1, 0, result, 0,
                    recursiveResult1.length - 1);
            System.arraycopy(recursiveResult2, 0, result,
                    recursiveResult1.length - 1, recursiveResult2.length);
            return result;
        } else
        {
            return new double[] { points[startIndex], points[endIndex] };
        }
    }
 
    public void setEpsilon(double epsilon)
    {
        if (epsilon <= 0)
        {
            throw new IllegalArgumentException("Epsilon nust be > 0");
        }
        this.epsilon = epsilon;
    }
 
}
 
public class Douglas_Peucker_Algorithm
{
    public static void main(String args[])
    {
        Random random = new Random();
        double[] points = new double[20];
        double[] fpoints;
        for (int i = 0; i < points.length; i++)
            points[i] = random.nextInt(10);
        RamerDouglasPeuckerFilter rdpf = new RamerDouglasPeuckerFilter(1);
        fpoints = rdpf.filter(points);
 
        System.out.println("Orginal points");
        for (int i = 0; i < points.length; i++)
            System.out.print(points[i] + " ");
 
        System.out.println("\nFiltered points");
        for (int i = 0; i < fpoints.length; i++)
            System.out.print(fpoints[i] + " ");       
    }
}

Output:

$ javac Douglas_Peucker_Algorithm.java
$ java Douglas_Peucker_Algorithm
 
Orginal points
5.0 0.0 8.0 7.0 2.0 9.0 4.0 4.0 0.0 7.0 4.0 1.0 9.0 6.0 8.0 9.0 6.0 6.0 9.0 6.0 
Filtered points
5.0 0.0 8.0 2.0 9.0 0.0 7.0 1.0 9.0 6.0 9.0 6.0 9.0 6.0

Related posts:

Java Program to Generate All Possible Combinations Out of a, b, c, d, e
Guide to the Volatile Keyword in Java
Java Program to Implement Ford–Fulkerson Algorithm
Spring AMQP in Reactive Applications
Java Program to Perform Cryptography Using Transposition Technique
Java – Delete a File
The Spring @Controller and @RestController Annotations
Java Program to Implement Sparse Array
New Features in Java 15
A Guide to WatchService in Java NIO2
Java Program to Generate Randomized Sequence of Given Range of Numbers
Java Program to Implement Nth Root Algorithm
Retrieve User Information in Spring Security
Java Program to Perform Inorder Recursive Traversal of a Given Binary Tree
Java Program to Represent Graph Using Adjacency List
Versioning a REST API
Java Program to Check if a Point d lies Inside or Outside a Circle Defined by Points a, b, c in a Pl...
Convert a Map to an Array, List or Set in Java
Collection trong java
Java IO vs NIO
Java Program to find the maximum subarray sum O(n^2) time(naive method)
Java Program to Find Number of Spanning Trees in a Complete Bipartite Graph
HttpClient 4 – Send Custom Cookie
Java Program to Generate Random Hexadecimal Byte
Java Program to Implement Gale Shapley Algorithm
Java Program to Implement Skip List
How to Get All Dates Between Two Dates?
Từ khóa static và final trong java
Comparing getPath(), getAbsolutePath(), and getCanonicalPath() in Java
Command-Line Arguments in Java
New Features in Java 8
Java Web Services – Jersey JAX-RS – REST và sử dụng REST API testing tools với Postman