Java Program for Douglas-Peucker Algorithm Implementation

This is a Java Program to implement Douglas-Peucker Algorithm. The Ramer–Douglas–Peucker algorithm (RDP) is an algorithm for reducing the number of points in a curve that is approximated by a series of points. This algorithm is also known under the names Douglas–Peucker algorithm, iterative end-point fit algorithm and split-and-merge algorithm. The purpose of the algorithm is, given a curve composed of line segments, to find a similar curve with fewer points. The algorithm defines ‘dissimilar’ based on the maximum distance between the original curve and the simplified curve. The simplified curve consists of a subset of the points that defined the original curve.

Here is the source code of the Java Program for Douglas-Peucker Algorithm Implementation. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.

//This is a java program to filter out points using Douglas Peucker Algorithm
import static java.lang.Math.abs;
import static java.lang.Math.pow;
import static java.lang.Math.sqrt;
 
import java.util.Random;
 
class RamerDouglasPeuckerFilter
{
 
    private double epsilon;
 
    public RamerDouglasPeuckerFilter(double epsilon)
    {
        if (epsilon <= 0)
        {
            throw new IllegalArgumentException("Epsilon nust be > 0");
        }
        this.epsilon = epsilon;
    }
 
    public double[] filter(double[] data)
    {
        return ramerDouglasPeuckerFunction(data, 0, data.length - 1);
    }
 
    public double getEpsilon()
    {
        return epsilon;
    }
 
    protected double[] ramerDouglasPeuckerFunction(double[] points,
            int startIndex, int endIndex)
    {
        double dmax = 0;
        int idx = 0;
        double a = endIndex - startIndex;
        double b = points[endIndex] - points[startIndex];
        double c = -(b * startIndex - a * points[startIndex]);
        double norm = sqrt(pow(a, 2) + pow(b, 2));
        for (int i = startIndex + 1; i < endIndex; i++)
        {
            double distance = abs(b * i - a * points[i] + c) / norm;
            if (distance > dmax)
            {
                idx = i;
                dmax = distance;
            }
        }
        if (dmax >= epsilon)
        {
            double[] recursiveResult1 = ramerDouglasPeuckerFunction(points,
                    startIndex, idx);
            double[] recursiveResult2 = ramerDouglasPeuckerFunction(points,
                    idx, endIndex);
            double[] result = new double[(recursiveResult1.length - 1)
                    + recursiveResult2.length];
            System.arraycopy(recursiveResult1, 0, result, 0,
                    recursiveResult1.length - 1);
            System.arraycopy(recursiveResult2, 0, result,
                    recursiveResult1.length - 1, recursiveResult2.length);
            return result;
        } else
        {
            return new double[] { points[startIndex], points[endIndex] };
        }
    }
 
    public void setEpsilon(double epsilon)
    {
        if (epsilon <= 0)
        {
            throw new IllegalArgumentException("Epsilon nust be > 0");
        }
        this.epsilon = epsilon;
    }
 
}
 
public class Douglas_Peucker_Algorithm
{
    public static void main(String args[])
    {
        Random random = new Random();
        double[] points = new double[20];
        double[] fpoints;
        for (int i = 0; i < points.length; i++)
            points[i] = random.nextInt(10);
        RamerDouglasPeuckerFilter rdpf = new RamerDouglasPeuckerFilter(1);
        fpoints = rdpf.filter(points);
 
        System.out.println("Orginal points");
        for (int i = 0; i < points.length; i++)
            System.out.print(points[i] + " ");
 
        System.out.println("\nFiltered points");
        for (int i = 0; i < fpoints.length; i++)
            System.out.print(fpoints[i] + " ");       
    }
}

Output:

$ javac Douglas_Peucker_Algorithm.java
$ java Douglas_Peucker_Algorithm
 
Orginal points
5.0 0.0 8.0 7.0 2.0 9.0 4.0 4.0 0.0 7.0 4.0 1.0 9.0 6.0 8.0 9.0 6.0 6.0 9.0 6.0 
Filtered points
5.0 0.0 8.0 2.0 9.0 0.0 7.0 1.0 9.0 6.0 9.0 6.0 9.0 6.0

Related posts:

Introduction to Java Serialization
Java Program to Implement a Binary Search Tree using Linked Lists
LinkedHashSet trong java
Java Program to Create a Random Graph Using Random Edge Generation
What is Thread-Safety and How to Achieve it?
Java Program to Implement Merge Sort Algorithm on Linked List
Java Program to Implement ArrayList API
Java Program to Delete a Particular Node in a Tree Without Using Recursion
Một số từ khóa trong Java
Hướng dẫn tạo và sử dụng ThreadPool trong Java
Java Program to Implement Disjoint Set Data Structure
Java Program to Perform Partial Key Search in a K-D Tree
Java Program to Find Maximum Element in an Array using Binary Search
Java Program to Implement wheel Sieve to Generate Prime Numbers Between Given Range
Enum trong java
Java Program to Implement Stack using Two Queues
Spring REST with a Zuul Proxy
How to Convert List to Map in Java
Java Program to Compute Discrete Fourier Transform Using Naive Approach
Introduction to Eclipse Collections
Java Program to Implement ArrayDeque API
Chương trình Java đầu tiên
Java Program to Check if a Directed Graph is a Tree or Not Using DFS
Java Program to Find the Connected Components of an UnDirected Graph
Java Program to Implement Hash Tables with Double Hashing
Overview of the java.util.concurrent
Java Program to Generate Date Between Given Range
Connect through a Proxy
Finding Max/Min of a List or Collection
String Initialization in Java
Spring Cloud – Tracing Services with Zipkin
Java Program to Find Minimum Number of Edges to Cut to make the Graph Disconnected