This is a Java Program to implement Pairing Heap. A pairing heap is a type of heap data structure with relatively simple implementation and excellent practical amortized performance. However, it has proven very difficult to determine the precise asymptotic running time of pairing heaps.Pairing heaps are heap ordered multiway trees. This program is based on the implementation by Mark Allen Weiss.
Here is the source code of the Java program to implement Pairing Heap. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
/*
* Java Program to Implement Pairing Heap
*/
import java.util.Scanner;
/* Class PairNode */
class PairNode
{
int element;
PairNode leftChild;
PairNode nextSibling;
PairNode prev;
/* Constructor */
public PairNode(int x)
{
element = x;
leftChild = null;
nextSibling = null;
prev = null;
}
}
/* Class PairHeap */
class PairHeap
{
private PairNode root;
private PairNode [ ] treeArray = new PairNode[ 5 ];
/* Constructor */
public PairHeap( )
{
root = null;
}
/* Check if heap is empty */
public boolean isEmpty()
{
return root == null;
}
/* Make heap logically empty */
public void makeEmpty( )
{
root = null;
}
/* Function to insert data */
public PairNode insert(int x)
{
PairNode newNode = new PairNode( x );
if (root == null)
root = newNode;
else
root = compareAndLink(root, newNode);
return newNode;
}
/* Function compareAndLink */
private PairNode compareAndLink(PairNode first, PairNode second)
{
if (second == null)
return first;
if (second.element < first.element)
{
/* Attach first as leftmost child of second */
second.prev = first.prev;
first.prev = second;
first.nextSibling = second.leftChild;
if (first.nextSibling != null)
first.nextSibling.prev = first;
second.leftChild = first;
return second;
}
else
{
/* Attach second as leftmost child of first */
second.prev = first;
first.nextSibling = second.nextSibling;
if (first.nextSibling != null)
first.nextSibling.prev = first;
second.nextSibling = first.leftChild;
if (second.nextSibling != null)
second.nextSibling.prev = second;
first.leftChild = second;
return first;
}
}
private PairNode combineSiblings(PairNode firstSibling)
{
if( firstSibling.nextSibling == null )
return firstSibling;
/* Store the subtrees in an array */
int numSiblings = 0;
for ( ; firstSibling != null; numSiblings++)
{
treeArray = doubleIfFull( treeArray, numSiblings );
treeArray[ numSiblings ] = firstSibling;
/* break links */
firstSibling.prev.nextSibling = null;
firstSibling = firstSibling.nextSibling;
}
treeArray = doubleIfFull( treeArray, numSiblings );
treeArray[ numSiblings ] = null;
/* Combine subtrees two at a time, going left to right */
int i = 0;
for ( ; i + 1 < numSiblings; i += 2)
treeArray[ i ] = compareAndLink(treeArray[i], treeArray[i + 1]);
int j = i - 2;
/* j has the result of last compareAndLink */
/* If an odd number of trees, get the last one */
if (j == numSiblings - 3)
treeArray[ j ] = compareAndLink( treeArray[ j ], treeArray[ j + 2 ] );
/* Now go right to left, merging last tree with */
/* next to last. The result becomes the new last */
for ( ; j >= 2; j -= 2)
treeArray[j - 2] = compareAndLink(treeArray[j-2], treeArray[j]);
return treeArray[0];
}
private PairNode[] doubleIfFull(PairNode [ ] array, int index)
{
if (index == array.length)
{
PairNode [ ] oldArray = array;
array = new PairNode[index * 2];
for( int i = 0; i < index; i++ )
array[i] = oldArray[i];
}
return array;
}
/* Delete min element */
public int deleteMin( )
{
if (isEmpty( ) )
return -1;
int x = root.element;
if (root.leftChild == null)
root = null;
else
root = combineSiblings( root.leftChild );
return x;
}
/* inorder traversal */
public void inorder()
{
inorder(root);
}
private void inorder(PairNode r)
{
if (r != null)
{
inorder(r.leftChild);
System.out.print(r.element +" ");
inorder(r.nextSibling);
}
}
}
/* Class PairHeapTest */
public class PairHeapTest
{
public static void main(String[] args)
{
Scanner scan = new Scanner(System.in);
System.out.println("PairHeap Test\n\n");
PairHeap ph = new PairHeap();
char ch;
/* Perform PairHeap operations */
do
{
System.out.println("\nPair Heap Operations\n");
System.out.println("1. insert ");
System.out.println("2. delete min");
System.out.println("3. check empty");
System.out.println("4. clear");
int choice = scan.nextInt();
switch (choice)
{
case 1 :
System.out.println("Enter integer element to insert");
ph.insert( scan.nextInt() );
break;
case 2 :
ph.deleteMin();
break;
case 3 :
System.out.println("Empty status = "+ ph.isEmpty());
break;
case 4 :
ph.makeEmpty();
break;
default :
System.out.println("Wrong Entry \n ");
break;
}
/* Display heap */
System.out.print("\nInorder Traversal : ");
ph.inorder();
System.out.println("\nDo you want to continue (Type y or n) \n");
ch = scan.next().charAt(0);
} while (ch == 'Y'|| ch == 'y');
}
}
PairHeap Test Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 1 Enter integer element to insert 67 Inorder Traversal : 67 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 1 Enter integer element to insert 23 Inorder Traversal : 67 23 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 1 Enter integer element to insert 12 Inorder Traversal : 67 23 12 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 1 Enter integer element to insert 6 Inorder Traversal : 67 23 12 6 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 1 Enter integer element to insert 78 Inorder Traversal : 78 67 23 12 6 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 1 Enter integer element to insert 34 Inorder Traversal : 34 78 67 23 12 6 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 1 Enter integer element to insert 45 Inorder Traversal : 45 34 78 67 23 12 6 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 1 Enter integer element to insert 98 Inorder Traversal : 98 45 34 78 67 23 12 6 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 1 Enter integer element to insert 67 Inorder Traversal : 67 98 45 34 78 67 23 12 6 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 2 Inorder Traversal : 98 67 45 34 78 67 23 12 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 2 Inorder Traversal : 98 67 45 34 78 67 23 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 2 Inorder Traversal : 67 78 98 67 45 34 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 2 Inorder Traversal : 78 67 98 67 45 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 4 Inorder Traversal : Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 3 Empty status = true Inorder Traversal : Do you want to continue (Type y or n) n
Related posts:
Hướng dẫn Java Design Pattern – Facade
Java Program to Implement Naor-Reingold Pseudo Random Function
Java Program to Implement the MD5 Algorithm
Guide to the Synchronized Keyword in Java
Java Program to Implement Warshall Algorithm
Show Hibernate/JPA SQL Statements from Spring Boot
A Guide to the finalize Method in Java
Java Program to Implement Euclid GCD Algorithm
Spring @Primary Annotation
Configure a Spring Boot Web Application
Rest Web service: Filter và Interceptor với Jersey 2.x (P2)
Guide to Spring @Autowired
Comparing getPath(), getAbsolutePath(), and getCanonicalPath() in Java
Remove All Occurrences of a Specific Value from a List
Kết hợp Java Reflection và Java Annotations
Spring Boot Security Auto-Configuration
Java Program to Describe the Representation of Graph using Incidence List
Introduction to Spring Data JPA
Convert String to int or Integer in Java
Optional trong Java 8
Java Program to Implement Quick Hull Algorithm to Find Convex Hull
Checking for Empty or Blank Strings in Java
A Quick Guide to Spring MVC Matrix Variables
Write/Read cookies using HTTP and Read a file from the internet
Java Program to Implement Euler Circuit Problem
Overview of Spring Boot Dev Tools
Hướng dẫn Java Design Pattern – Interpreter
Java Program to Construct K-D Tree for 2 Dimensional Data
Spring Security OAuth2 – Simple Token Revocation
Dockerizing a Spring Boot Application
Java Program to Find the Peak Element of an Array O(n) time (Naive Method)
Hướng dẫn sử dụng Lớp FilePermission trong java