This is a Java Program to implement Pairing Heap. A pairing heap is a type of heap data structure with relatively simple implementation and excellent practical amortized performance. However, it has proven very difficult to determine the precise asymptotic running time of pairing heaps.Pairing heaps are heap ordered multiway trees. This program is based on the implementation by Mark Allen Weiss.
Here is the source code of the Java program to implement Pairing Heap. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
/*
* Java Program to Implement Pairing Heap
*/
import java.util.Scanner;
/* Class PairNode */
class PairNode
{
int element;
PairNode leftChild;
PairNode nextSibling;
PairNode prev;
/* Constructor */
public PairNode(int x)
{
element = x;
leftChild = null;
nextSibling = null;
prev = null;
}
}
/* Class PairHeap */
class PairHeap
{
private PairNode root;
private PairNode [ ] treeArray = new PairNode[ 5 ];
/* Constructor */
public PairHeap( )
{
root = null;
}
/* Check if heap is empty */
public boolean isEmpty()
{
return root == null;
}
/* Make heap logically empty */
public void makeEmpty( )
{
root = null;
}
/* Function to insert data */
public PairNode insert(int x)
{
PairNode newNode = new PairNode( x );
if (root == null)
root = newNode;
else
root = compareAndLink(root, newNode);
return newNode;
}
/* Function compareAndLink */
private PairNode compareAndLink(PairNode first, PairNode second)
{
if (second == null)
return first;
if (second.element < first.element)
{
/* Attach first as leftmost child of second */
second.prev = first.prev;
first.prev = second;
first.nextSibling = second.leftChild;
if (first.nextSibling != null)
first.nextSibling.prev = first;
second.leftChild = first;
return second;
}
else
{
/* Attach second as leftmost child of first */
second.prev = first;
first.nextSibling = second.nextSibling;
if (first.nextSibling != null)
first.nextSibling.prev = first;
second.nextSibling = first.leftChild;
if (second.nextSibling != null)
second.nextSibling.prev = second;
first.leftChild = second;
return first;
}
}
private PairNode combineSiblings(PairNode firstSibling)
{
if( firstSibling.nextSibling == null )
return firstSibling;
/* Store the subtrees in an array */
int numSiblings = 0;
for ( ; firstSibling != null; numSiblings++)
{
treeArray = doubleIfFull( treeArray, numSiblings );
treeArray[ numSiblings ] = firstSibling;
/* break links */
firstSibling.prev.nextSibling = null;
firstSibling = firstSibling.nextSibling;
}
treeArray = doubleIfFull( treeArray, numSiblings );
treeArray[ numSiblings ] = null;
/* Combine subtrees two at a time, going left to right */
int i = 0;
for ( ; i + 1 < numSiblings; i += 2)
treeArray[ i ] = compareAndLink(treeArray[i], treeArray[i + 1]);
int j = i - 2;
/* j has the result of last compareAndLink */
/* If an odd number of trees, get the last one */
if (j == numSiblings - 3)
treeArray[ j ] = compareAndLink( treeArray[ j ], treeArray[ j + 2 ] );
/* Now go right to left, merging last tree with */
/* next to last. The result becomes the new last */
for ( ; j >= 2; j -= 2)
treeArray[j - 2] = compareAndLink(treeArray[j-2], treeArray[j]);
return treeArray[0];
}
private PairNode[] doubleIfFull(PairNode [ ] array, int index)
{
if (index == array.length)
{
PairNode [ ] oldArray = array;
array = new PairNode[index * 2];
for( int i = 0; i < index; i++ )
array[i] = oldArray[i];
}
return array;
}
/* Delete min element */
public int deleteMin( )
{
if (isEmpty( ) )
return -1;
int x = root.element;
if (root.leftChild == null)
root = null;
else
root = combineSiblings( root.leftChild );
return x;
}
/* inorder traversal */
public void inorder()
{
inorder(root);
}
private void inorder(PairNode r)
{
if (r != null)
{
inorder(r.leftChild);
System.out.print(r.element +" ");
inorder(r.nextSibling);
}
}
}
/* Class PairHeapTest */
public class PairHeapTest
{
public static void main(String[] args)
{
Scanner scan = new Scanner(System.in);
System.out.println("PairHeap Test\n\n");
PairHeap ph = new PairHeap();
char ch;
/* Perform PairHeap operations */
do
{
System.out.println("\nPair Heap Operations\n");
System.out.println("1. insert ");
System.out.println("2. delete min");
System.out.println("3. check empty");
System.out.println("4. clear");
int choice = scan.nextInt();
switch (choice)
{
case 1 :
System.out.println("Enter integer element to insert");
ph.insert( scan.nextInt() );
break;
case 2 :
ph.deleteMin();
break;
case 3 :
System.out.println("Empty status = "+ ph.isEmpty());
break;
case 4 :
ph.makeEmpty();
break;
default :
System.out.println("Wrong Entry \n ");
break;
}
/* Display heap */
System.out.print("\nInorder Traversal : ");
ph.inorder();
System.out.println("\nDo you want to continue (Type y or n) \n");
ch = scan.next().charAt(0);
} while (ch == 'Y'|| ch == 'y');
}
}
PairHeap Test Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 1 Enter integer element to insert 67 Inorder Traversal : 67 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 1 Enter integer element to insert 23 Inorder Traversal : 67 23 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 1 Enter integer element to insert 12 Inorder Traversal : 67 23 12 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 1 Enter integer element to insert 6 Inorder Traversal : 67 23 12 6 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 1 Enter integer element to insert 78 Inorder Traversal : 78 67 23 12 6 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 1 Enter integer element to insert 34 Inorder Traversal : 34 78 67 23 12 6 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 1 Enter integer element to insert 45 Inorder Traversal : 45 34 78 67 23 12 6 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 1 Enter integer element to insert 98 Inorder Traversal : 98 45 34 78 67 23 12 6 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 1 Enter integer element to insert 67 Inorder Traversal : 67 98 45 34 78 67 23 12 6 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 2 Inorder Traversal : 98 67 45 34 78 67 23 12 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 2 Inorder Traversal : 98 67 45 34 78 67 23 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 2 Inorder Traversal : 67 78 98 67 45 34 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 2 Inorder Traversal : 78 67 98 67 45 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 4 Inorder Traversal : Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 3 Empty status = true Inorder Traversal : Do you want to continue (Type y or n) n
Related posts:
Java Program to Use the Bellman-Ford Algorithm to Find the Shortest Path
Spring Boot - Runners
Spring Boot - Rest Controller Unit Test
Java Program to Implement IdentityHashMap API
Java Program to Perform Postorder Recursive Traversal of a Given Binary Tree
Working with Tree Model Nodes in Jackson
How to Round a Number to N Decimal Places in Java
Spring @Primary Annotation
Spring Boot - Code Structure
Call Methods at Runtime Using Java Reflection
Java Program to Implement LinkedBlockingQueue API
XML Serialization and Deserialization with Jackson
Java Program to Implement ConcurrentLinkedQueue API
Các kiểu dữ liệu trong java
A Guide to HashSet in Java
Java Program to Solve a Matching Problem for a Given Specific Case
Spring’s RequestBody and ResponseBody Annotations
Java Program to Implement Hash Tree
An Introduction to Java.util.Hashtable Class
Remove HTML tags from a file to extract only the TEXT
Java Program to Implement Hash Tables with Linear Probing
Get and Post Lists of Objects with RestTemplate
Properties with Spring and Spring Boot
Spring Boot - Interceptor
Custom Exception trong Java
Java Program to Implement Heap
Enum trong java
Serve Static Resources with Spring
Java Program to Implement ArrayList API
A Guide to BitSet in Java
Java Program to Evaluate an Expression using Stacks
Upload and Display Excel Files with Spring MVC