This is a Java Program to implement Pairing Heap. A pairing heap is a type of heap data structure with relatively simple implementation and excellent practical amortized performance. However, it has proven very difficult to determine the precise asymptotic running time of pairing heaps.Pairing heaps are heap ordered multiway trees. This program is based on the implementation by Mark Allen Weiss.
Here is the source code of the Java program to implement Pairing Heap. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
/* * Java Program to Implement Pairing Heap */ import java.util.Scanner; /* Class PairNode */ class PairNode { int element; PairNode leftChild; PairNode nextSibling; PairNode prev; /* Constructor */ public PairNode(int x) { element = x; leftChild = null; nextSibling = null; prev = null; } } /* Class PairHeap */ class PairHeap { private PairNode root; private PairNode [ ] treeArray = new PairNode[ 5 ]; /* Constructor */ public PairHeap( ) { root = null; } /* Check if heap is empty */ public boolean isEmpty() { return root == null; } /* Make heap logically empty */ public void makeEmpty( ) { root = null; } /* Function to insert data */ public PairNode insert(int x) { PairNode newNode = new PairNode( x ); if (root == null) root = newNode; else root = compareAndLink(root, newNode); return newNode; } /* Function compareAndLink */ private PairNode compareAndLink(PairNode first, PairNode second) { if (second == null) return first; if (second.element < first.element) { /* Attach first as leftmost child of second */ second.prev = first.prev; first.prev = second; first.nextSibling = second.leftChild; if (first.nextSibling != null) first.nextSibling.prev = first; second.leftChild = first; return second; } else { /* Attach second as leftmost child of first */ second.prev = first; first.nextSibling = second.nextSibling; if (first.nextSibling != null) first.nextSibling.prev = first; second.nextSibling = first.leftChild; if (second.nextSibling != null) second.nextSibling.prev = second; first.leftChild = second; return first; } } private PairNode combineSiblings(PairNode firstSibling) { if( firstSibling.nextSibling == null ) return firstSibling; /* Store the subtrees in an array */ int numSiblings = 0; for ( ; firstSibling != null; numSiblings++) { treeArray = doubleIfFull( treeArray, numSiblings ); treeArray[ numSiblings ] = firstSibling; /* break links */ firstSibling.prev.nextSibling = null; firstSibling = firstSibling.nextSibling; } treeArray = doubleIfFull( treeArray, numSiblings ); treeArray[ numSiblings ] = null; /* Combine subtrees two at a time, going left to right */ int i = 0; for ( ; i + 1 < numSiblings; i += 2) treeArray[ i ] = compareAndLink(treeArray[i], treeArray[i + 1]); int j = i - 2; /* j has the result of last compareAndLink */ /* If an odd number of trees, get the last one */ if (j == numSiblings - 3) treeArray[ j ] = compareAndLink( treeArray[ j ], treeArray[ j + 2 ] ); /* Now go right to left, merging last tree with */ /* next to last. The result becomes the new last */ for ( ; j >= 2; j -= 2) treeArray[j - 2] = compareAndLink(treeArray[j-2], treeArray[j]); return treeArray[0]; } private PairNode[] doubleIfFull(PairNode [ ] array, int index) { if (index == array.length) { PairNode [ ] oldArray = array; array = new PairNode[index * 2]; for( int i = 0; i < index; i++ ) array[i] = oldArray[i]; } return array; } /* Delete min element */ public int deleteMin( ) { if (isEmpty( ) ) return -1; int x = root.element; if (root.leftChild == null) root = null; else root = combineSiblings( root.leftChild ); return x; } /* inorder traversal */ public void inorder() { inorder(root); } private void inorder(PairNode r) { if (r != null) { inorder(r.leftChild); System.out.print(r.element +" "); inorder(r.nextSibling); } } } /* Class PairHeapTest */ public class PairHeapTest { public static void main(String[] args) { Scanner scan = new Scanner(System.in); System.out.println("PairHeap Test\n\n"); PairHeap ph = new PairHeap(); char ch; /* Perform PairHeap operations */ do { System.out.println("\nPair Heap Operations\n"); System.out.println("1. insert "); System.out.println("2. delete min"); System.out.println("3. check empty"); System.out.println("4. clear"); int choice = scan.nextInt(); switch (choice) { case 1 : System.out.println("Enter integer element to insert"); ph.insert( scan.nextInt() ); break; case 2 : ph.deleteMin(); break; case 3 : System.out.println("Empty status = "+ ph.isEmpty()); break; case 4 : ph.makeEmpty(); break; default : System.out.println("Wrong Entry \n "); break; } /* Display heap */ System.out.print("\nInorder Traversal : "); ph.inorder(); System.out.println("\nDo you want to continue (Type y or n) \n"); ch = scan.next().charAt(0); } while (ch == 'Y'|| ch == 'y'); } }
PairHeap Test Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 1 Enter integer element to insert 67 Inorder Traversal : 67 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 1 Enter integer element to insert 23 Inorder Traversal : 67 23 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 1 Enter integer element to insert 12 Inorder Traversal : 67 23 12 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 1 Enter integer element to insert 6 Inorder Traversal : 67 23 12 6 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 1 Enter integer element to insert 78 Inorder Traversal : 78 67 23 12 6 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 1 Enter integer element to insert 34 Inorder Traversal : 34 78 67 23 12 6 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 1 Enter integer element to insert 45 Inorder Traversal : 45 34 78 67 23 12 6 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 1 Enter integer element to insert 98 Inorder Traversal : 98 45 34 78 67 23 12 6 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 1 Enter integer element to insert 67 Inorder Traversal : 67 98 45 34 78 67 23 12 6 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 2 Inorder Traversal : 98 67 45 34 78 67 23 12 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 2 Inorder Traversal : 98 67 45 34 78 67 23 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 2 Inorder Traversal : 67 78 98 67 45 34 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 2 Inorder Traversal : 78 67 98 67 45 Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 4 Inorder Traversal : Do you want to continue (Type y or n) y Pair Heap Operations 1. insert 2. delete min 3. check empty 4. clear 3 Empty status = true Inorder Traversal : Do you want to continue (Type y or n) n
Related posts:
A Guide to the finalize Method in Java
Spring Boot Change Context Path
Java Program to Implement Shell Sort
Spring Boot - Rest Template
Một số nguyên tắc, định luật trong lập trình
Java Program to Implement Queue using Linked List
Java Program to Implement CopyOnWriteArraySet API
Concrete Class in Java
Java Program to Implement Binomial Tree
Java Program to Find Whether a Path Exists Between 2 Given Nodes
Hướng dẫn sử dụng Lớp FilePermission trong java
Java Program to Check the Connectivity of Graph Using BFS
Login For a Spring Web App – Error Handling and Localization
JWT – Token-based Authentication trong Jersey 2.x
Debugging Reactive Streams in Java
Spring Security Remember Me
Guide to System.gc()
Java Program to Implement Borwein Algorithm
Java Program to Implement Circular Singly Linked List
Adding Parameters to HttpClient Requests
Java Program to Implement Trie
Java Program to Check Whether it is Weakly Connected or Strongly Connected for a Directed Graph
Java Program to Implement Adjacency Matrix
Java Program to Find the Peak Element of an Array O(n) time (Naive Method)
OAuth2 for a Spring REST API – Handle the Refresh Token in AngularJS
How to Round a Number to N Decimal Places in Java
Java Program to Find Transitive Closure of a Graph
The Difference Between map() and flatMap()
Comparing Dates in Java
Abstract class và Interface trong Java
An Intro to Spring Cloud Zookeeper
Java Program to Implement ConcurrentHashMap API