This is a Java Program to implement Leftist Heap. A leftist heap is a priority queue implemented with a variant of a binary heap. Every node has an s-value which is the distance to the nearest leaf. In contrast to a binary heap, a leftist tree attempts to be very unbalanced. In addition to the heap property, leftist trees are maintained so the right descendant of each node has the lower s-value.
Here is the source code of the Java program to implement Leftist Heap. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
/** * Java Program to Implement LeftistHeap **/ import java.util.Scanner; /** Class LeftHeapNode **/ class LeftHeapNode { int element, sValue; LeftHeapNode left, right; public LeftHeapNode(int ele) { this(ele, null, null); } public LeftHeapNode(int ele, LeftHeapNode left, LeftHeapNode right) { this.element = ele; this.left = left; this.right = right; this.sValue = 0; } } /** Class LeftistHeap **/ class LeftistHeap { private LeftHeapNode root; /** Constructor **/ public LeftistHeap() { root = null; } /** Check if heap is empty **/ public boolean isEmpty() { return root == null; } /** Make heap empty **/ public void clear( ) { root = null; } /** Function to insert data **/ public void insert(int x ) { root = merge(new LeftHeapNode( x ), root); } /** Function merge **/ public void merge(LeftistHeap rhs) { if (this == rhs) return; root = merge(root, rhs.root); rhs.root = null; } /** Function merge **/ private LeftHeapNode merge(LeftHeapNode x, LeftHeapNode y) { if (x == null) return y; if (y == null) return x; if (x.element > y.element) { LeftHeapNode temp = x; x = y; y = temp; } x.right = merge(x.right, y); if(x.left == null) { x.left = x.right; x.right = null; } else { if(x.left.sValue < x.right.sValue) { LeftHeapNode temp = x.left; x.left = x.right; x.right = temp; } x.sValue = x.right.sValue + 1; } return x; } /** Function to delete minimum element **/ public int deleteMin( ) { if (isEmpty() ) return -1; int minItem = root.element; root = merge(root.left, root.right); return minItem; } /** Inorder traversal **/ public void inorder() { inorder(root); System.out.println(); } private void inorder(LeftHeapNode r) { if (r != null) { inorder(r.left); System.out.print(r.element +" "); inorder(r.right); } } } /** Class LeftistHeapTest **/ public class LeftistHeapTest { public static void main(String[] args) { Scanner scan = new Scanner(System.in); System.out.println("LeftistHeap Test\n\n"); LeftistHeap lh = new LeftistHeap(); char ch; /** Perform LeftistHeap operations **/ do { System.out.println("\nLeftist Heap Operations\n"); System.out.println("1. insert "); System.out.println("2. delete min"); System.out.println("3. check empty"); System.out.println("4. clear"); int choice = scan.nextInt(); switch (choice) { case 1 : System.out.println("Enter integer element to insert"); lh.insert( scan.nextInt() ); break; case 2 : lh.deleteMin(); break; case 3 : System.out.println("Empty status = "+ lh.isEmpty()); break; case 4 : lh.clear(); break; default : System.out.println("Wrong Entry \n "); break; } /** Display heap **/ System.out.print("\nInorder Traversal : "); lh.inorder(); System.out.println("\nDo you want to continue (Type y or n) \n"); ch = scan.next().charAt(0); } while (ch == 'Y'|| ch == 'y'); } }
LeftistHeap Test Leftist Heap Operations 1. insert 2. delete min 3. check empty 4. clear 1 Enter integer element to insert 24 Inorder Traversal : 24 Do you want to continue (Type y or n) y Leftist Heap Operations 1. insert 2. delete min 3. check empty 4. clear 1 Enter integer element to insert 6 Inorder Traversal : 24 6 Do you want to continue (Type y or n) y Leftist Heap Operations 1. insert 2. delete min 3. check empty 4. clear 1 Enter integer element to insert 19 Inorder Traversal : 24 6 19 Do you want to continue (Type y or n) y Leftist Heap Operations 1. insert 2. delete min 3. check empty 4. clear 1 Enter integer element to insert 94 Inorder Traversal : 24 6 94 19 Do you want to continue (Type y or n) y Leftist Heap Operations 1. insert 2. delete min 3. check empty 4. clear 1 Enter integer element to insert 5 Inorder Traversal : 24 6 94 19 5 Do you want to continue (Type y or n) y Leftist Heap Operations 1. insert 2. delete min 3. check empty 4. clear 1 Enter integer element to insert 63 Inorder Traversal : 24 6 94 19 5 63 Do you want to continue (Type y or n) y Leftist Heap Operations 1. insert 2. delete min 3. check empty 4. clear 2 Inorder Traversal : 94 19 63 6 24 Do you want to continue (Type y or n) y Leftist Heap Operations 1. insert 2. delete min 3. check empty 4. clear 2 Inorder Traversal : 94 19 63 24 Do you want to continue (Type y or n) y Leftist Heap Operations 1. insert 2. delete min 3. check empty 4. clear 2 Inorder Traversal : 63 24 94 Do you want to continue (Type y or n) y Leftist Heap Operations 1. insert 2. delete min 3. check empty 4. clear 2 Inorder Traversal : 94 63 Do you want to continue (Type y or n) y Leftist Heap Operations 1. insert 2. delete min 3. check empty 4. clear 4 Inorder Traversal : Do you want to continue (Type y or n) y Leftist Heap Operations 1. insert 2. delete min 3. check empty 4. clear 3 Empty status = true Inorder Traversal : Do you want to continue (Type y or n) n
Related posts:
Convert String to int or Integer in Java
Java Program to Implement Stack
Java Program to Implement TreeSet API
Summing Numbers with Java Streams
New in Spring Security OAuth2 – Verify Claims
Use Liquibase to Safely Evolve Your Database Schema
Giới thiệu Google Guice – Aspect Oriented Programming (AOP)
Spring Cloud – Tracing Services with Zipkin
Java Program to Implement the Edmond’s Algorithm for Maximum Cardinality Matching
Java – InputStream to Reader
Extract links from an HTML page
Java Program to Implement Quick Sort Using Randomization
Java Program to Create a Random Graph Using Random Edge Generation
Registration with Spring Security – Password Encoding
HttpClient Connection Management
Java Program to Use Above Below Primitive to Test Whether Two Lines Intersect
Java Program to Use rand and srand Functions
Runnable vs. Callable in Java
Updating your Password
Java Program to Find MST (Minimum Spanning Tree) using Prim’s Algorithm
New Features in Java 8
Spring Security 5 for Reactive Applications
Java Program to Implement a Binary Search Tree using Linked Lists
Wrapper Classes in Java
Java Program to Implement Find all Cross Edges in a Graph
Java Program to Find Strongly Connected Components in Graphs
The SpringJUnitConfig and SpringJUnitWebConfig Annotations in Spring 5
Using Spring ResponseEntity to Manipulate the HTTP Response
So sánh HashMap và Hashtable trong Java
Java – Reader to InputStream
Java Byte Array to InputStream
Jackson – Bidirectional Relationships