You are given a cactus graph, in this graph each edge lies on at most one simple cycle.
It is given as $m$ edges $a_i, b_i$, weight of $i$-th edge is $i$.
Let’s call a path in cactus increasing if the weights of edges on this path are increasing.
Let’s call a pair of vertices $(u,v)$ happy if there exists an increasing path that starts in $u$ and ends in $v$.
For each vertex $u$ find the number of other vertices $v$, such that pair $(u,v)$ is happy.Input
The first line of input contains two integers $n,m$ ($1 \leq n, m \leq 500\,000$): the number of vertices and edges in the given cactus.
The next $m$ lines contain a description of cactus edges, $i$-th of them contain two integers $a_i, b_i$ ($1 \leq a_i, b_i \leq n, a_i \neq b_i$).
It is guaranteed that there are no multiple edges and the graph is connected.Output
Print $n$ integers, required values for vertices $1,2,\ldots,n$.Examplesinput
3 3 1 2 2 3 3 1
output
2 2 2
input
5 4 1 2 2 3 3 4 4 5
output
4 4 3 2 1
Solution:
#include <bits/stdc++.h>
using namespace std;
template <typename T>
class graph {
public:
struct edge {
int from;
int to;
T cost;
};
vector<edge> edges;
vector<vector<int>> g;
int n;
graph(int _n) : n(_n) {
g.resize(n);
}
virtual int add(int from, int to, T cost) = 0;
};
template <typename T>
class undigraph : public graph<T> {
public:
using graph<T>::edges;
using graph<T>::g;
using graph<T>::n;
undigraph(int _n) : graph<T>(_n) {
}
int add(int from, int to, T cost = 1) {
assert(0 <= from && from < n && 0 <= to && to < n);
int id = (int) edges.size();
g[from].push_back(id);
g[to].push_back(id);
edges.push_back({from, to, cost});
return id;
}
};
template <typename T>
vector<vector<int>> find_cycles(const graph<T> &g, int bound_cnt = 1 << 30, int bound_size = 1 << 30) {
vector<int> was(g.n, -1);
vector<int> st;
vector<vector<int>> cycles;
int total_size = 0;
function<void(int, int)> dfs = [&](int v, int pe) {
if ((int) cycles.size() >= bound_cnt || total_size >= bound_size) {
return;
}
was[v] = (int) st.size();
for (int id : g.g[v]) {
if (id == pe) {
continue;
}
auto &e = g.edges[id];
int to = e.from ^ e.to ^ v;
if (was[to] >= 0) {
vector<int> cycle(1, id);
for (int j = was[to]; j < (int) st.size(); j++) {
cycle.push_back(st[j]);
}
cycles.push_back(cycle);
total_size += (int) cycle.size();
if ((int) cycles.size() >= bound_cnt || total_size >= bound_size) {
return;
}
continue;
}
if (was[to] == -1) {
st.push_back(id);
dfs(to, id);
st.pop_back();
}
}
was[v] = -2;
};
for (int i = 0; i < g.n; i++) {
if (was[i] == -1) {
dfs(i, -1);
}
}
return cycles;
// cycles are given by edge ids, all cycles are simple
// breaks after getting bound_cnt cycles or total_size >= bound_size
// digraph: finds at least one cycle in every connected component (if not broken)
// undigraph: finds cycle basis
}
template <typename T>
vector<int> edges_to_vertices(const graph<T> &g, const vector<int> &edge_cycle) {
int sz = (int) edge_cycle.size();
vector<int> vertex_cycle;
if (sz <= 2) {
vertex_cycle.push_back(g.edges[edge_cycle[0]].from);
if (sz == 2) {
vertex_cycle.push_back(g.edges[edge_cycle[0]].to);
}
} else {
for (int i = 0; i < sz; i++) {
int j = (i + 1) % sz;
auto &e = g.edges[edge_cycle[i]];
auto &other = g.edges[edge_cycle[j]];
if (other.from == e.from || other.to == e.from) {
vertex_cycle.push_back(e.to);
} else {
vertex_cycle.push_back(e.from);
}
}
}
return vertex_cycle;
// only for simple cycles!
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n, m;
cin >> n >> m;
undigraph<int> g(n);
for (int i = 0; i < m; i++) {
int x, y;
cin >> x >> y;
--x; --y;
g.add(x, y);
}
vector<vector<int>> cycles = find_cycles(g);
vector<vector<int>> events(m);
for (auto& cycle : cycles) {
int sz = (int) cycle.size();
int pos = (int) (min_element(cycle.begin(), cycle.end()) - cycle.begin());
rotate(cycle.begin(), cycle.begin() + pos, cycle.end());
pos = (int) (max_element(cycle.begin(), cycle.end()) - cycle.begin());
bool ok = true;
for (int i = 0; i < pos - 1; i++) {
if (cycle[i] > cycle[i + 1]) {
ok = false;
break;
}
}
for (int i = pos; i < sz - 1; i++) {
if (cycle[i] < cycle[i + 1]) {
ok = false;
break;
}
}
if (ok) {
events[cycle[pos]].push_back(cycle[0]);
}
}
vector<int> sub(m, 0);
vector<int> ans(n, 1);
for (int i = m - 1; i >= 0; i--) {
auto& e = g.edges[i];
int x = e.from;
int y = e.to;
int cur = ans[x] + ans[y] - sub[i];
ans[x] = ans[y] = cur;
for (int j : events[i]) {
sub[j] += cur;
}
}
for (int i = 0; i < n; i++) {
if (i > 0) {
cout << " ";
}
cout << ans[i] - 1;
}
cout << '\n';
return 0;
}