This is java program to find the solution to the linear equations of any number of variables. The class provides a simple implementation of the Gauss-Seidel method. If the matrix isn’t diagonally dominant the program tries to convert it(if possible) by rearranging the rows.
Here is the source code of the Java Program to Implement Gauss-Seidel Method. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This class provides a simple implementation of the GaussSeidel method for solving systems of linear equations. //If the matrix isn't diagonally dominant the program tries to convert it(if possible) by rearranging the rows. import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; public class Gauss_Seidel { public static final int MAX_ITERATIONS = 100; private double[][] M; public Gauss_Seidel(double [][] matrix) { M = matrix; } public void print() { int n = M.length; for (int i = 0; i < n; i++) { for (int j = 0; j < n + 1; j++) System.out.print(M[i][j] + " "); System.out.println(); } } public boolean transformToDominant(int r, boolean[] V, int[] R) { int n = M.length; if (r == M.length) { double[][] T = new double[n][n+1]; for (int i = 0; i < R.length; i++) { for (int j = 0; j < n + 1; j++) T[i][j] = M[R[i]][j]; } M = T; return true; } for (int i = 0; i < n; i++) { if (V[i]) continue; double sum = 0; for (int j = 0; j < n; j++) sum += Math.abs(M[i][j]); if (2 * Math.abs(M[i][r]) > sum) { // diagonally dominant? V[i] = true; R[r] = i; if (transformToDominant(r + 1, V, R)) return true; V[i] = false; } } return false; } public boolean makeDominant() { boolean[] visited = new boolean[M.length]; int[] rows = new int[M.length]; Arrays.fill(visited, false); return transformToDominant(0, visited, rows); } public void solve() { int iterations = 0; int n = M.length; double epsilon = 1e-15; double[] X = new double[n]; // Approximations double[] P = new double[n]; // Prev Arrays.fill(X, 0); while (true) { for (int i = 0; i < n; i++) { double sum = M[i][n]; // b_n for (int j = 0; j < n; j++) if (j != i) sum -= M[i][j] * X[j]; // Update x_i to use in the next row calculation X[i] = 1/M[i][i] * sum; } System.out.print("X_" + iterations + " = {"); for (int i = 0; i < n; i++) System.out.print(X[i] + " "); System.out.println("}"); iterations++; if (iterations == 1) continue; boolean stop = true; for (int i = 0; i < n && stop; i++) if (Math.abs(X[i] - P[i]) > epsilon) stop = false; if (stop || iterations == MAX_ITERATIONS) break; P = (double[])X.clone(); } } public static void main(String[] args) throws IOException { int n; double[][] M; BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); PrintWriter writer = new PrintWriter(System.out, true); System.out.println("Enter the number of variables in the equation:"); n = Integer.parseInt(reader.readLine()); M = new double[n][n+1]; System.out.println("Enter the augmented matrix:"); for (int i = 0; i < n; i++) { StringTokenizer strtk = new StringTokenizer(reader.readLine()); while (strtk.hasMoreTokens()) for (int j = 0; j < n + 1 && strtk.hasMoreTokens(); j++) M[i][j] = Integer.parseInt(strtk.nextToken()); } Gauss_Seidel gausSeidel = new Gauss_Seidel(M); if (!gausSeidel.makeDominant()) { writer.println("The system isn't diagonally dominant: " + "The method cannot guarantee convergence."); } writer.println(); gausSeidel.print(); gausSeidel.solve(); } }
Output:
$ javac Gauss_Seidel.java $ java Gauss_Seidel Enter the number of variables in the equation: 2 Enter the augmented matrix: 1 2 3 6 5 4 6.0 5.0 4.0 1.0 2.0 3.0 X_0 = {0.6666666666666666 1.1666666666666667 } X_1 = {-0.30555555555555564 1.652777777777778 } X_2 = {-0.7106481481481481 1.855324074074074 } X_3 = {-0.8794367283950617 1.9397183641975309 } X_4 = {-0.9497653034979425 1.9748826517489713 } X_5 = {-0.9790688764574759 1.9895344382287379 } X_6 = {-0.9912786985239483 1.9956393492619742 } X_7 = {-0.9963661243849785 1.9981830621924892 } X_8 = {-0.9984858851604077 1.9992429425802039 } X_9 = {-0.9993691188168363 1.999684559408418 } X_10 = {-0.9997371328403484 1.999868566420174 } X_11 = {-0.9998904720168117 1.9999452360084058 } X_12 = {-0.999954363340338 1.999977181670169 } X_13 = {-0.9999809847251406 1.9999904923625702 } X_14 = {-0.9999920769688085 1.9999960384844042 } X_15 = {-0.9999966987370034 1.9999983493685016 } X_16 = {-0.9999986244737512 1.9999993122368755 } X_17 = {-0.9999994268640631 1.9999997134320315 } X_18 = {-0.9999997611933598 1.9999998805966799 } X_19 = {-0.9999999004972331 1.9999999502486165 } X_20 = {-0.9999999585405137 1.9999999792702567 } X_21 = {-0.999999982725214 1.999999991362607 } X_22 = {-0.9999999928021724 1.9999999964010862 } X_23 = {-0.999999997000905 1.9999999985004524 } X_24 = {-0.999999998750377 1.9999999993751885 } X_25 = {-0.9999999994793237 1.9999999997396618 } X_26 = {-0.9999999997830514 1.9999999998915257 } X_27 = {-0.9999999999096048 1.9999999999548024 } X_28 = {-0.9999999999623352 1.9999999999811675 } X_29 = {-0.9999999999843061 1.999999999992153 } X_30 = {-0.9999999999934606 1.9999999999967302 } X_31 = {-0.9999999999972751 1.9999999999986375 } X_32 = {-0.9999999999988646 1.9999999999994322 } X_33 = {-0.9999999999995268 1.9999999999997633 } X_34 = {-0.9999999999998028 1.9999999999999014 } X_35 = {-0.9999999999999176 1.9999999999999587 } X_36 = {-0.9999999999999656 1.9999999999999827 } X_37 = {-0.9999999999999855 1.9999999999999927 } X_38 = {-0.9999999999999938 1.999999999999997 } X_39 = {-0.9999999999999973 1.9999999999999987 } X_40 = {-0.9999999999999988 1.9999999999999993 } X_41 = {-0.9999999999999993 1.9999999999999996 }
Related posts:
Java Program to Describe the Representation of Graph using Incidence Matrix
REST Web service: Basic Authentication trong Jersey 2.x
Java Program to Implement Tarjan Algorithm
The Spring @Controller and @RestController Annotations
Consumer trong Java 8
Java Program to Implement Solovay Strassen Primality Test Algorithm
Java – Random Long, Float, Integer and Double
Java Program to Implement Sieve Of Eratosthenes
Zipping Collections in Java
Semaphore trong Java
Spring 5 Functional Bean Registration
Java Program to Perform Quick Sort on Large Number of Elements
Java Program to Search for an Element in a Binary Search Tree
Spring REST API with Protocol Buffers
How to Get All Spring-Managed Beans?
Spring Autowiring of Generic Types
A Guide to JUnit 5
Hashing a Password in Java
A Guide to the ResourceBundle
Java Program to Implement Hash Tables with Double Hashing
Giới thiệu java.io.tmpdir
Spring Cloud Bus
Guide to CountDownLatch in Java
Java Program to Implement Patricia Trie
Spring Boot - Exception Handling
Jackson – JsonMappingException (No serializer found for class)
Java – Reader to InputStream
Java Program to Delete a Particular Node in a Tree Without Using Recursion
Java Program to Implement the Alexander Bogomolny’s UnOrdered Permutation Algorithm for Elements Fro...
Java Program to Implement Pagoda
Java Program to Generate Date Between Given Range
Spring Boot - Database Handling