This is java program to find the solution to the linear equations of any number of variables. The class provides a simple implementation of the Gauss-Seidel method. If the matrix isn’t diagonally dominant the program tries to convert it(if possible) by rearranging the rows.
Here is the source code of the Java Program to Implement Gauss-Seidel Method. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This class provides a simple implementation of the GaussSeidel method for solving systems of linear equations.
//If the matrix isn't diagonally dominant the program tries to convert it(if possible) by rearranging the rows.
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
public class Gauss_Seidel
{
public static final int MAX_ITERATIONS = 100;
private double[][] M;
public Gauss_Seidel(double [][] matrix) { M = matrix; }
public void print()
{
int n = M.length;
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n + 1; j++)
System.out.print(M[i][j] + " ");
System.out.println();
}
}
public boolean transformToDominant(int r, boolean[] V, int[] R)
{
int n = M.length;
if (r == M.length)
{
double[][] T = new double[n][n+1];
for (int i = 0; i < R.length; i++)
{
for (int j = 0; j < n + 1; j++)
T[i][j] = M[R[i]][j];
}
M = T;
return true;
}
for (int i = 0; i < n; i++)
{
if (V[i]) continue;
double sum = 0;
for (int j = 0; j < n; j++)
sum += Math.abs(M[i][j]);
if (2 * Math.abs(M[i][r]) > sum)
{ // diagonally dominant?
V[i] = true;
R[r] = i;
if (transformToDominant(r + 1, V, R))
return true;
V[i] = false;
}
}
return false;
}
public boolean makeDominant()
{
boolean[] visited = new boolean[M.length];
int[] rows = new int[M.length];
Arrays.fill(visited, false);
return transformToDominant(0, visited, rows);
}
public void solve()
{
int iterations = 0;
int n = M.length;
double epsilon = 1e-15;
double[] X = new double[n]; // Approximations
double[] P = new double[n]; // Prev
Arrays.fill(X, 0);
while (true)
{
for (int i = 0; i < n; i++)
{
double sum = M[i][n]; // b_n
for (int j = 0; j < n; j++)
if (j != i)
sum -= M[i][j] * X[j];
// Update x_i to use in the next row calculation
X[i] = 1/M[i][i] * sum;
}
System.out.print("X_" + iterations + " = {");
for (int i = 0; i < n; i++)
System.out.print(X[i] + " ");
System.out.println("}");
iterations++;
if (iterations == 1)
continue;
boolean stop = true;
for (int i = 0; i < n && stop; i++)
if (Math.abs(X[i] - P[i]) > epsilon)
stop = false;
if (stop || iterations == MAX_ITERATIONS) break;
P = (double[])X.clone();
}
}
public static void main(String[] args) throws IOException
{
int n;
double[][] M;
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
PrintWriter writer = new PrintWriter(System.out, true);
System.out.println("Enter the number of variables in the equation:");
n = Integer.parseInt(reader.readLine());
M = new double[n][n+1];
System.out.println("Enter the augmented matrix:");
for (int i = 0; i < n; i++)
{
StringTokenizer strtk = new StringTokenizer(reader.readLine());
while (strtk.hasMoreTokens())
for (int j = 0; j < n + 1 && strtk.hasMoreTokens(); j++)
M[i][j] = Integer.parseInt(strtk.nextToken());
}
Gauss_Seidel gausSeidel = new Gauss_Seidel(M);
if (!gausSeidel.makeDominant())
{
writer.println("The system isn't diagonally dominant: " +
"The method cannot guarantee convergence.");
}
writer.println();
gausSeidel.print();
gausSeidel.solve();
}
}
Output:
$ javac Gauss_Seidel.java
$ java Gauss_Seidel
Enter the number of variables in the equation:
2
Enter the augmented matrix:
1 2 3
6 5 4
6.0 5.0 4.0
1.0 2.0 3.0
X_0 = {0.6666666666666666 1.1666666666666667 }
X_1 = {-0.30555555555555564 1.652777777777778 }
X_2 = {-0.7106481481481481 1.855324074074074 }
X_3 = {-0.8794367283950617 1.9397183641975309 }
X_4 = {-0.9497653034979425 1.9748826517489713 }
X_5 = {-0.9790688764574759 1.9895344382287379 }
X_6 = {-0.9912786985239483 1.9956393492619742 }
X_7 = {-0.9963661243849785 1.9981830621924892 }
X_8 = {-0.9984858851604077 1.9992429425802039 }
X_9 = {-0.9993691188168363 1.999684559408418 }
X_10 = {-0.9997371328403484 1.999868566420174 }
X_11 = {-0.9998904720168117 1.9999452360084058 }
X_12 = {-0.999954363340338 1.999977181670169 }
X_13 = {-0.9999809847251406 1.9999904923625702 }
X_14 = {-0.9999920769688085 1.9999960384844042 }
X_15 = {-0.9999966987370034 1.9999983493685016 }
X_16 = {-0.9999986244737512 1.9999993122368755 }
X_17 = {-0.9999994268640631 1.9999997134320315 }
X_18 = {-0.9999997611933598 1.9999998805966799 }
X_19 = {-0.9999999004972331 1.9999999502486165 }
X_20 = {-0.9999999585405137 1.9999999792702567 }
X_21 = {-0.999999982725214 1.999999991362607 }
X_22 = {-0.9999999928021724 1.9999999964010862 }
X_23 = {-0.999999997000905 1.9999999985004524 }
X_24 = {-0.999999998750377 1.9999999993751885 }
X_25 = {-0.9999999994793237 1.9999999997396618 }
X_26 = {-0.9999999997830514 1.9999999998915257 }
X_27 = {-0.9999999999096048 1.9999999999548024 }
X_28 = {-0.9999999999623352 1.9999999999811675 }
X_29 = {-0.9999999999843061 1.999999999992153 }
X_30 = {-0.9999999999934606 1.9999999999967302 }
X_31 = {-0.9999999999972751 1.9999999999986375 }
X_32 = {-0.9999999999988646 1.9999999999994322 }
X_33 = {-0.9999999999995268 1.9999999999997633 }
X_34 = {-0.9999999999998028 1.9999999999999014 }
X_35 = {-0.9999999999999176 1.9999999999999587 }
X_36 = {-0.9999999999999656 1.9999999999999827 }
X_37 = {-0.9999999999999855 1.9999999999999927 }
X_38 = {-0.9999999999999938 1.999999999999997 }
X_39 = {-0.9999999999999973 1.9999999999999987 }
X_40 = {-0.9999999999999988 1.9999999999999993 }
X_41 = {-0.9999999999999993 1.9999999999999996 }
Related posts:
Phương thức forEach() trong java 8
Guide to @ConfigurationProperties in Spring Boot
Registration – Activate a New Account by Email
Java Program to Implement ConcurrentLinkedQueue API
Adding Parameters to HttpClient Requests
Serialization và Deserialization trong java
New Features in Java 13
Spring Webflux and CORS
Java Convenience Factory Methods for Collections
Send an email with an attachment
Jackson vs Gson
Guide to DelayQueue
Circular Dependencies in Spring
Java Program to Implement Max-Flow Min-Cut Theorem
Apache Commons Collections Bag
Java Program to Implement Interpolation Search Algorithm
Java Program to Describe the Representation of Graph using Incidence List
Java Program to Implement LinkedBlockingDeque API
Java Program to add two large numbers using Linked List
Using Custom Banners in Spring Boot
Comparing getPath(), getAbsolutePath(), and getCanonicalPath() in Java
Java Program to Implement Triply Linked List
Introduction to Apache Commons Text
Java – File to Reader
Entity To DTO Conversion for a Spring REST API
Extra Login Fields with Spring Security
Java Program to Implement Wagner and Fisher Algorithm for online String Matching
Sử dụng JDBC API thực thi câu lệnh truy vấn dữ liệu
A Guide to ConcurrentMap
Java Program to Implement Iterative Deepening
Integer Constant Pool trong Java
Java Program for Topological Sorting in Graphs