This is java program to find the solution to the linear equations of any number of variables. The class provides a simple implementation of the Gauss-Seidel method. If the matrix isn’t diagonally dominant the program tries to convert it(if possible) by rearranging the rows.
Here is the source code of the Java Program to Implement Gauss-Seidel Method. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This class provides a simple implementation of the GaussSeidel method for solving systems of linear equations. //If the matrix isn't diagonally dominant the program tries to convert it(if possible) by rearranging the rows. import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; public class Gauss_Seidel { public static final int MAX_ITERATIONS = 100; private double[][] M; public Gauss_Seidel(double [][] matrix) { M = matrix; } public void print() { int n = M.length; for (int i = 0; i < n; i++) { for (int j = 0; j < n + 1; j++) System.out.print(M[i][j] + " "); System.out.println(); } } public boolean transformToDominant(int r, boolean[] V, int[] R) { int n = M.length; if (r == M.length) { double[][] T = new double[n][n+1]; for (int i = 0; i < R.length; i++) { for (int j = 0; j < n + 1; j++) T[i][j] = M[R[i]][j]; } M = T; return true; } for (int i = 0; i < n; i++) { if (V[i]) continue; double sum = 0; for (int j = 0; j < n; j++) sum += Math.abs(M[i][j]); if (2 * Math.abs(M[i][r]) > sum) { // diagonally dominant? V[i] = true; R[r] = i; if (transformToDominant(r + 1, V, R)) return true; V[i] = false; } } return false; } public boolean makeDominant() { boolean[] visited = new boolean[M.length]; int[] rows = new int[M.length]; Arrays.fill(visited, false); return transformToDominant(0, visited, rows); } public void solve() { int iterations = 0; int n = M.length; double epsilon = 1e-15; double[] X = new double[n]; // Approximations double[] P = new double[n]; // Prev Arrays.fill(X, 0); while (true) { for (int i = 0; i < n; i++) { double sum = M[i][n]; // b_n for (int j = 0; j < n; j++) if (j != i) sum -= M[i][j] * X[j]; // Update x_i to use in the next row calculation X[i] = 1/M[i][i] * sum; } System.out.print("X_" + iterations + " = {"); for (int i = 0; i < n; i++) System.out.print(X[i] + " "); System.out.println("}"); iterations++; if (iterations == 1) continue; boolean stop = true; for (int i = 0; i < n && stop; i++) if (Math.abs(X[i] - P[i]) > epsilon) stop = false; if (stop || iterations == MAX_ITERATIONS) break; P = (double[])X.clone(); } } public static void main(String[] args) throws IOException { int n; double[][] M; BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); PrintWriter writer = new PrintWriter(System.out, true); System.out.println("Enter the number of variables in the equation:"); n = Integer.parseInt(reader.readLine()); M = new double[n][n+1]; System.out.println("Enter the augmented matrix:"); for (int i = 0; i < n; i++) { StringTokenizer strtk = new StringTokenizer(reader.readLine()); while (strtk.hasMoreTokens()) for (int j = 0; j < n + 1 && strtk.hasMoreTokens(); j++) M[i][j] = Integer.parseInt(strtk.nextToken()); } Gauss_Seidel gausSeidel = new Gauss_Seidel(M); if (!gausSeidel.makeDominant()) { writer.println("The system isn't diagonally dominant: " + "The method cannot guarantee convergence."); } writer.println(); gausSeidel.print(); gausSeidel.solve(); } }
Output:
$ javac Gauss_Seidel.java $ java Gauss_Seidel Enter the number of variables in the equation: 2 Enter the augmented matrix: 1 2 3 6 5 4 6.0 5.0 4.0 1.0 2.0 3.0 X_0 = {0.6666666666666666 1.1666666666666667 } X_1 = {-0.30555555555555564 1.652777777777778 } X_2 = {-0.7106481481481481 1.855324074074074 } X_3 = {-0.8794367283950617 1.9397183641975309 } X_4 = {-0.9497653034979425 1.9748826517489713 } X_5 = {-0.9790688764574759 1.9895344382287379 } X_6 = {-0.9912786985239483 1.9956393492619742 } X_7 = {-0.9963661243849785 1.9981830621924892 } X_8 = {-0.9984858851604077 1.9992429425802039 } X_9 = {-0.9993691188168363 1.999684559408418 } X_10 = {-0.9997371328403484 1.999868566420174 } X_11 = {-0.9998904720168117 1.9999452360084058 } X_12 = {-0.999954363340338 1.999977181670169 } X_13 = {-0.9999809847251406 1.9999904923625702 } X_14 = {-0.9999920769688085 1.9999960384844042 } X_15 = {-0.9999966987370034 1.9999983493685016 } X_16 = {-0.9999986244737512 1.9999993122368755 } X_17 = {-0.9999994268640631 1.9999997134320315 } X_18 = {-0.9999997611933598 1.9999998805966799 } X_19 = {-0.9999999004972331 1.9999999502486165 } X_20 = {-0.9999999585405137 1.9999999792702567 } X_21 = {-0.999999982725214 1.999999991362607 } X_22 = {-0.9999999928021724 1.9999999964010862 } X_23 = {-0.999999997000905 1.9999999985004524 } X_24 = {-0.999999998750377 1.9999999993751885 } X_25 = {-0.9999999994793237 1.9999999997396618 } X_26 = {-0.9999999997830514 1.9999999998915257 } X_27 = {-0.9999999999096048 1.9999999999548024 } X_28 = {-0.9999999999623352 1.9999999999811675 } X_29 = {-0.9999999999843061 1.999999999992153 } X_30 = {-0.9999999999934606 1.9999999999967302 } X_31 = {-0.9999999999972751 1.9999999999986375 } X_32 = {-0.9999999999988646 1.9999999999994322 } X_33 = {-0.9999999999995268 1.9999999999997633 } X_34 = {-0.9999999999998028 1.9999999999999014 } X_35 = {-0.9999999999999176 1.9999999999999587 } X_36 = {-0.9999999999999656 1.9999999999999827 } X_37 = {-0.9999999999999855 1.9999999999999927 } X_38 = {-0.9999999999999938 1.999999999999997 } X_39 = {-0.9999999999999973 1.9999999999999987 } X_40 = {-0.9999999999999988 1.9999999999999993 } X_41 = {-0.9999999999999993 1.9999999999999996 }
Related posts:
Java Program to Implement Hash Tables chaining with Singly Linked Lists
Java Program to Implement Direct Addressing Tables
Lập trình mạng với java
Introduction to the Java NIO Selector
Guide to the Java TransferQueue
Mockito and JUnit 5 – Using ExtendWith
Java Program to add two large numbers using Linked List
Spring Data Java 8 Support
Kết hợp Java Reflection và Java Annotations
Hướng dẫn Java Design Pattern – Flyweight
Spring @RequestMapping New Shortcut Annotations
JPA/Hibernate Persistence Context
Guide to Dynamic Tests in Junit 5
Hướng dẫn Java Design Pattern – Composite
Read an Outlook MSG file
Jackson – Marshall String to JsonNode
Java Program to Implement Threaded Binary Tree
Iterating over Enum Values in Java
Java Program to Find Transitive Closure of a Graph
Returning Custom Status Codes from Spring Controllers
Spring Boot - Build Systems
HashSet trong java
Guide to java.util.concurrent.BlockingQueue
Spring 5 and Servlet 4 – The PushBuilder
Implementing a Runnable vs Extending a Thread
Java Program to Find SSSP (Single Source Shortest Path) in DAG (Directed Acyclic Graphs)
Java Program to Represent Graph Using Linked List
Spring Boot - Introduction
Guide to Spring Cloud Kubernetes
A Guide to Apache Commons Collections CollectionUtils
Java Program to Implement Quick Sort Using Randomization
Java Program to Use Dynamic Programming to Solve Approximate String Matching