This is java program to find the solution to the linear equations of any number of variables. The class provides a simple implementation of the Gauss-Seidel method. If the matrix isn’t diagonally dominant the program tries to convert it(if possible) by rearranging the rows.
Here is the source code of the Java Program to Implement Gauss-Seidel Method. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This class provides a simple implementation of the GaussSeidel method for solving systems of linear equations. //If the matrix isn't diagonally dominant the program tries to convert it(if possible) by rearranging the rows. import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; public class Gauss_Seidel { public static final int MAX_ITERATIONS = 100; private double[][] M; public Gauss_Seidel(double [][] matrix) { M = matrix; } public void print() { int n = M.length; for (int i = 0; i < n; i++) { for (int j = 0; j < n + 1; j++) System.out.print(M[i][j] + " "); System.out.println(); } } public boolean transformToDominant(int r, boolean[] V, int[] R) { int n = M.length; if (r == M.length) { double[][] T = new double[n][n+1]; for (int i = 0; i < R.length; i++) { for (int j = 0; j < n + 1; j++) T[i][j] = M[R[i]][j]; } M = T; return true; } for (int i = 0; i < n; i++) { if (V[i]) continue; double sum = 0; for (int j = 0; j < n; j++) sum += Math.abs(M[i][j]); if (2 * Math.abs(M[i][r]) > sum) { // diagonally dominant? V[i] = true; R[r] = i; if (transformToDominant(r + 1, V, R)) return true; V[i] = false; } } return false; } public boolean makeDominant() { boolean[] visited = new boolean[M.length]; int[] rows = new int[M.length]; Arrays.fill(visited, false); return transformToDominant(0, visited, rows); } public void solve() { int iterations = 0; int n = M.length; double epsilon = 1e-15; double[] X = new double[n]; // Approximations double[] P = new double[n]; // Prev Arrays.fill(X, 0); while (true) { for (int i = 0; i < n; i++) { double sum = M[i][n]; // b_n for (int j = 0; j < n; j++) if (j != i) sum -= M[i][j] * X[j]; // Update x_i to use in the next row calculation X[i] = 1/M[i][i] * sum; } System.out.print("X_" + iterations + " = {"); for (int i = 0; i < n; i++) System.out.print(X[i] + " "); System.out.println("}"); iterations++; if (iterations == 1) continue; boolean stop = true; for (int i = 0; i < n && stop; i++) if (Math.abs(X[i] - P[i]) > epsilon) stop = false; if (stop || iterations == MAX_ITERATIONS) break; P = (double[])X.clone(); } } public static void main(String[] args) throws IOException { int n; double[][] M; BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); PrintWriter writer = new PrintWriter(System.out, true); System.out.println("Enter the number of variables in the equation:"); n = Integer.parseInt(reader.readLine()); M = new double[n][n+1]; System.out.println("Enter the augmented matrix:"); for (int i = 0; i < n; i++) { StringTokenizer strtk = new StringTokenizer(reader.readLine()); while (strtk.hasMoreTokens()) for (int j = 0; j < n + 1 && strtk.hasMoreTokens(); j++) M[i][j] = Integer.parseInt(strtk.nextToken()); } Gauss_Seidel gausSeidel = new Gauss_Seidel(M); if (!gausSeidel.makeDominant()) { writer.println("The system isn't diagonally dominant: " + "The method cannot guarantee convergence."); } writer.println(); gausSeidel.print(); gausSeidel.solve(); } }
Output:
$ javac Gauss_Seidel.java $ java Gauss_Seidel Enter the number of variables in the equation: 2 Enter the augmented matrix: 1 2 3 6 5 4 6.0 5.0 4.0 1.0 2.0 3.0 X_0 = {0.6666666666666666 1.1666666666666667 } X_1 = {-0.30555555555555564 1.652777777777778 } X_2 = {-0.7106481481481481 1.855324074074074 } X_3 = {-0.8794367283950617 1.9397183641975309 } X_4 = {-0.9497653034979425 1.9748826517489713 } X_5 = {-0.9790688764574759 1.9895344382287379 } X_6 = {-0.9912786985239483 1.9956393492619742 } X_7 = {-0.9963661243849785 1.9981830621924892 } X_8 = {-0.9984858851604077 1.9992429425802039 } X_9 = {-0.9993691188168363 1.999684559408418 } X_10 = {-0.9997371328403484 1.999868566420174 } X_11 = {-0.9998904720168117 1.9999452360084058 } X_12 = {-0.999954363340338 1.999977181670169 } X_13 = {-0.9999809847251406 1.9999904923625702 } X_14 = {-0.9999920769688085 1.9999960384844042 } X_15 = {-0.9999966987370034 1.9999983493685016 } X_16 = {-0.9999986244737512 1.9999993122368755 } X_17 = {-0.9999994268640631 1.9999997134320315 } X_18 = {-0.9999997611933598 1.9999998805966799 } X_19 = {-0.9999999004972331 1.9999999502486165 } X_20 = {-0.9999999585405137 1.9999999792702567 } X_21 = {-0.999999982725214 1.999999991362607 } X_22 = {-0.9999999928021724 1.9999999964010862 } X_23 = {-0.999999997000905 1.9999999985004524 } X_24 = {-0.999999998750377 1.9999999993751885 } X_25 = {-0.9999999994793237 1.9999999997396618 } X_26 = {-0.9999999997830514 1.9999999998915257 } X_27 = {-0.9999999999096048 1.9999999999548024 } X_28 = {-0.9999999999623352 1.9999999999811675 } X_29 = {-0.9999999999843061 1.999999999992153 } X_30 = {-0.9999999999934606 1.9999999999967302 } X_31 = {-0.9999999999972751 1.9999999999986375 } X_32 = {-0.9999999999988646 1.9999999999994322 } X_33 = {-0.9999999999995268 1.9999999999997633 } X_34 = {-0.9999999999998028 1.9999999999999014 } X_35 = {-0.9999999999999176 1.9999999999999587 } X_36 = {-0.9999999999999656 1.9999999999999827 } X_37 = {-0.9999999999999855 1.9999999999999927 } X_38 = {-0.9999999999999938 1.999999999999997 } X_39 = {-0.9999999999999973 1.9999999999999987 } X_40 = {-0.9999999999999988 1.9999999999999993 } X_41 = {-0.9999999999999993 1.9999999999999996 }
Related posts:
Sử dụng CyclicBarrier trong Java
Java Program to Implement EnumMap API
Java Program to Implement Aho-Corasick Algorithm for String Matching
Creating Docker Images with Spring Boot
OAuth2 for a Spring REST API – Handle the Refresh Token in AngularJS
Quick Intro to Spring Cloud Configuration
Intro to Spring Boot Starters
Optional trong Java 8
Introduction to the Java NIO2 File API
Hướng dẫn Java Design Pattern – Observer
Hướng dẫn Java Design Pattern – DAO
Java Program to Implement the Binary Counting Method to Generate Subsets of a Set
What is a POJO Class?
The Order of Tests in JUnit
Java Program to Implement RoleUnresolvedList API
Java Program to Implement Circular Doubly Linked List
Java Program to Check Whether Topological Sorting can be Performed in a Graph
Java Program to Implement Unrolled Linked List
Java Program to do a Depth First Search/Traversal on a graph non-recursively
Guide to DelayQueue
Registration with Spring Security – Password Encoding
Flattening Nested Collections in Java
Java Program to Perform Matrix Multiplication
4 tính chất của lập trình hướng đối tượng trong Java
Java Program to Implement the Vigenere Cypher
A Guide to ConcurrentMap
Lớp LinkedHashMap trong Java
Java Program to Check if it is a Sparse Matrix
A Guide to BitSet in Java
Ép kiểu trong Java (Type casting)
Spring Boot Tutorial – Bootstrap a Simple Application
Tạo ứng dụng Java RESTful Client với thư viện OkHttp