This is a Java Program to implement ScapeGoat Tree. A scapegoat tree is a self-balancing binary search tree which provides worst-case O(log n) lookup time, and O(log n) amortized insertion and deletion time.
Here is the source code of the Java program to implement ScapeGoat tree. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
/* * Java Program to Implement ScapeGoat Tree */ import java.util.Scanner; /* Class SGTNode */ class SGTNode { SGTNode right, left, parent; int value; /* Constructor */ public SGTNode(int val) { value = val; } } /* Class ScapeGoatTree */ class ScapeGoatTree { private SGTNode root; private int n, q; /* Constructor */ public ScapeGoatTree() { root = null; // size = 0 n = 0; } /* Function to check if tree is empty */ public boolean isEmpty() { return root == null; } /* Function to clear tree */ public void makeEmpty() { root = null; n = 0; } /* Function to count number of nodes recursively */ private int size(SGTNode r) { if (r == null) return 0; else { int l = 1; l += size(r.left); l += size(r.right); return l; } } /* Functions to search for an element */ public boolean search(int val) { return search(root, val); } /* Function to search for an element recursively */ private boolean search(SGTNode r, int val) { boolean found = false; while ((r != null) && !found) { int rval = r.value; if (val < rval) r = r.left; else if (val > rval) r = r.right; else { found = true; break; } found = search(r, val); } return found; } /* Function to return current size of tree */ public int size() { return n; } /* Function for inorder traversal */ public void inorder() { inorder(root); } private void inorder(SGTNode r) { if (r != null) { inorder(r.left); System.out.print(r.value +" "); inorder(r.right); } } /* Function for preorder traversal */ public void preorder() { preorder(root); } private void preorder(SGTNode r) { if (r != null) { System.out.print(r.value +" "); preorder(r.left); preorder(r.right); } } /* Function for postorder traversal */ public void postorder() { postorder(root); } private void postorder(SGTNode r) { if (r != null) { postorder(r.left); postorder(r.right); System.out.print(r.value +" "); } } private static final int log32(int q) { final double log23 = 2.4663034623764317; return (int)Math.ceil(log23*Math.log(q)); } /* Function to insert an element */ public boolean add(int x) { /* first do basic insertion keeping track of depth */ SGTNode u = new SGTNode(x); int d = addWithDepth(u); if (d > log32(q)) { /* depth exceeded, find scapegoat */ SGTNode w = u.parent; while (3*size(w) <= 2*size(w.parent)) w = w.parent; rebuild(w.parent); } return d >= 0; } /* Function to rebuild tree from node u */ protected void rebuild(SGTNode u) { int ns = size(u); SGTNode p = u.parent; SGTNode[] a = new SGTNode[ns]; packIntoArray(u, a, 0); if (p == null) { root = buildBalanced(a, 0, ns); root.parent = null; } else if (p.right == u) { p.right = buildBalanced(a, 0, ns); p.right.parent = p; } else { p.left = buildBalanced(a, 0, ns); p.left.parent = p; } } /* Function to packIntoArray */ protected int packIntoArray(SGTNode u, SGTNode[] a, int i) { if (u == null) { return i; } i = packIntoArray(u.left, a, i); a[i++] = u; return packIntoArray(u.right, a, i); } /* Function to build balanced nodes */ protected SGTNode buildBalanced(SGTNode[] a, int i, int ns) { if (ns == 0) return null; int m = ns / 2; a[i + m].left = buildBalanced(a, i, m); if (a[i + m].left != null) a[i + m].left.parent = a[i + m]; a[i + m].right = buildBalanced(a, i + m + 1, ns - m - 1); if (a[i + m].right != null) a[i + m].right.parent = a[i + m]; return a[i + m]; } /* Function add with depth */ public int addWithDepth(SGTNode u) { SGTNode w = root; if (w == null) { root = u; n++; q++; return 0; } boolean done = false; int d = 0; do { if (u.value < w.value) { if (w.left == null) { w.left = u; u.parent = w; done = true; } else { w = w.left; } } else if (u.value > w.value) { if (w.right == null) { w.right = u; u.parent = w; done = true; } w = w.right; } else { return -1; } d++; } while (!done); n++; q++; return d; } } public class ScapeGoatTreeTest { public static void main(String[] args) { Scanner scan = new Scanner(System.in); /* Creating object of ScapeGoatTree */ ScapeGoatTree sgt = new ScapeGoatTree(); System.out.println("ScapeGoat Tree Test\n"); char ch; /* Perform tree operations */ do { System.out.println("\nScapeGoat Tree Operations\n"); System.out.println("1. insert "); System.out.println("2. count nodes"); System.out.println("3. search"); System.out.println("4. check empty"); System.out.println("5. make empty"); int choice = scan.nextInt(); switch (choice) { case 1 : System.out.println("Enter integer element to insert"); sgt.add( scan.nextInt() ); break; case 2 : System.out.println("Nodes = "+ sgt.size()); break; case 3 : System.out.println("Enter integer element to search"); System.out.println("Search result : "+ sgt.search( scan.nextInt() )); break; case 4 : System.out.println("Empty status = "+ sgt.isEmpty()); break; case 5 : System.out.println("\nTree cleared\n"); sgt.makeEmpty(); break; default : System.out.println("Wrong Entry \n "); break; } /* Display tree */ System.out.print("\nPost order : "); sgt.postorder(); System.out.print("\nPre order : "); sgt.preorder(); System.out.print("\nIn order : "); sgt.inorder(); System.out.println("\nDo you want to continue (Type y or n) \n"); ch = scan.next().charAt(0); } while (ch == 'Y'|| ch == 'y'); } }
ScapeGoat Tree Test ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 34 Post order : 34 Pre order : 34 In order : 34 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 67 Post order : 67 34 Pre order : 34 67 In order : 34 67 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 11 Post order : 11 67 34 Pre order : 34 11 67 In order : 11 34 67 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 24 Post order : 24 11 67 34 Pre order : 34 11 24 67 In order : 11 24 34 67 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 6 Post order : 6 24 11 67 34 Pre order : 34 11 6 24 67 In order : 6 11 24 34 67 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 97 Post order : 6 24 11 97 67 34 Pre order : 34 11 6 24 67 97 In order : 6 11 24 34 67 97 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 12 Post order : 6 12 24 11 97 67 34 Pre order : 34 11 6 24 12 67 97 In order : 6 11 12 24 34 67 97 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 57 Post order : 6 12 24 11 57 97 67 34 Pre order : 34 11 6 24 12 67 57 97 In order : 6 11 12 24 34 57 67 97 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 2 Nodes = 8 Post order : 6 12 24 11 57 97 67 34 Pre order : 34 11 6 24 12 67 57 97 In order : 6 11 12 24 34 57 67 97 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 3 Enter integer element to search 57 Search result : true Post order : 6 12 24 11 57 97 67 34 Pre order : 34 11 6 24 12 67 57 97 In order : 6 11 12 24 34 57 67 97 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 5 Tree cleared Post order : Pre order : In order : Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 4 Empty status = true Post order : Pre order : In order : Do you want to continue (Type y or n) n
Related posts:
Java Program to Implement Fermat Factorization Algorithm
Java Program to Check whether Directed Graph is Connected using DFS
Spring Cloud – Securing Services
Testing an OAuth Secured API with Spring MVC
XML Serialization and Deserialization with Jackson
Java Program to Construct an Expression Tree for an Prefix Expression
Java Program to Implement Branch and Bound Method to Perform a Combinatorial Search
New in Spring Security OAuth2 – Verify Claims
Function trong Java 8
Java Program to Check if a Given Graph Contain Hamiltonian Cycle or Not
Java Program to Implement AA Tree
Converting a Stack Trace to a String in Java
Lớp Arrarys trong Java (Arrays Utility Class)
Hướng dẫn Java Design Pattern – Strategy
Guide to the Synchronized Keyword in Java
Giới thiệu luồng vào ra (I/O) trong Java
Tạo số và chuỗi ngẫu nhiên trong Java
HashMap trong Java hoạt động như thế nào?
The SpringJUnitConfig and SpringJUnitWebConfig Annotations in Spring 5
A Guide to EnumMap
Query Entities by Dates and Times with Spring Data JPA
Java – Delete a File
Creating a Web Application with Spring 5
Generate Spring Boot REST Client with Swagger
Java Program to Generate Randomized Sequence of Given Range of Numbers
Java Program to Implement Hash Tables with Linear Probing
The Order of Tests in JUnit
The Registration API becomes RESTful
Java Program to Implement Ternary Tree
Java Program to Implement Adjacency Matrix
Spring AMQP in Reactive Applications
Spring Boot - Zuul Proxy Server and Routing