This is a Java Program to implement ScapeGoat Tree. A scapegoat tree is a self-balancing binary search tree which provides worst-case O(log n) lookup time, and O(log n) amortized insertion and deletion time.
Here is the source code of the Java program to implement ScapeGoat tree. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
/* * Java Program to Implement ScapeGoat Tree */ import java.util.Scanner; /* Class SGTNode */ class SGTNode { SGTNode right, left, parent; int value; /* Constructor */ public SGTNode(int val) { value = val; } } /* Class ScapeGoatTree */ class ScapeGoatTree { private SGTNode root; private int n, q; /* Constructor */ public ScapeGoatTree() { root = null; // size = 0 n = 0; } /* Function to check if tree is empty */ public boolean isEmpty() { return root == null; } /* Function to clear tree */ public void makeEmpty() { root = null; n = 0; } /* Function to count number of nodes recursively */ private int size(SGTNode r) { if (r == null) return 0; else { int l = 1; l += size(r.left); l += size(r.right); return l; } } /* Functions to search for an element */ public boolean search(int val) { return search(root, val); } /* Function to search for an element recursively */ private boolean search(SGTNode r, int val) { boolean found = false; while ((r != null) && !found) { int rval = r.value; if (val < rval) r = r.left; else if (val > rval) r = r.right; else { found = true; break; } found = search(r, val); } return found; } /* Function to return current size of tree */ public int size() { return n; } /* Function for inorder traversal */ public void inorder() { inorder(root); } private void inorder(SGTNode r) { if (r != null) { inorder(r.left); System.out.print(r.value +" "); inorder(r.right); } } /* Function for preorder traversal */ public void preorder() { preorder(root); } private void preorder(SGTNode r) { if (r != null) { System.out.print(r.value +" "); preorder(r.left); preorder(r.right); } } /* Function for postorder traversal */ public void postorder() { postorder(root); } private void postorder(SGTNode r) { if (r != null) { postorder(r.left); postorder(r.right); System.out.print(r.value +" "); } } private static final int log32(int q) { final double log23 = 2.4663034623764317; return (int)Math.ceil(log23*Math.log(q)); } /* Function to insert an element */ public boolean add(int x) { /* first do basic insertion keeping track of depth */ SGTNode u = new SGTNode(x); int d = addWithDepth(u); if (d > log32(q)) { /* depth exceeded, find scapegoat */ SGTNode w = u.parent; while (3*size(w) <= 2*size(w.parent)) w = w.parent; rebuild(w.parent); } return d >= 0; } /* Function to rebuild tree from node u */ protected void rebuild(SGTNode u) { int ns = size(u); SGTNode p = u.parent; SGTNode[] a = new SGTNode[ns]; packIntoArray(u, a, 0); if (p == null) { root = buildBalanced(a, 0, ns); root.parent = null; } else if (p.right == u) { p.right = buildBalanced(a, 0, ns); p.right.parent = p; } else { p.left = buildBalanced(a, 0, ns); p.left.parent = p; } } /* Function to packIntoArray */ protected int packIntoArray(SGTNode u, SGTNode[] a, int i) { if (u == null) { return i; } i = packIntoArray(u.left, a, i); a[i++] = u; return packIntoArray(u.right, a, i); } /* Function to build balanced nodes */ protected SGTNode buildBalanced(SGTNode[] a, int i, int ns) { if (ns == 0) return null; int m = ns / 2; a[i + m].left = buildBalanced(a, i, m); if (a[i + m].left != null) a[i + m].left.parent = a[i + m]; a[i + m].right = buildBalanced(a, i + m + 1, ns - m - 1); if (a[i + m].right != null) a[i + m].right.parent = a[i + m]; return a[i + m]; } /* Function add with depth */ public int addWithDepth(SGTNode u) { SGTNode w = root; if (w == null) { root = u; n++; q++; return 0; } boolean done = false; int d = 0; do { if (u.value < w.value) { if (w.left == null) { w.left = u; u.parent = w; done = true; } else { w = w.left; } } else if (u.value > w.value) { if (w.right == null) { w.right = u; u.parent = w; done = true; } w = w.right; } else { return -1; } d++; } while (!done); n++; q++; return d; } } public class ScapeGoatTreeTest { public static void main(String[] args) { Scanner scan = new Scanner(System.in); /* Creating object of ScapeGoatTree */ ScapeGoatTree sgt = new ScapeGoatTree(); System.out.println("ScapeGoat Tree Test\n"); char ch; /* Perform tree operations */ do { System.out.println("\nScapeGoat Tree Operations\n"); System.out.println("1. insert "); System.out.println("2. count nodes"); System.out.println("3. search"); System.out.println("4. check empty"); System.out.println("5. make empty"); int choice = scan.nextInt(); switch (choice) { case 1 : System.out.println("Enter integer element to insert"); sgt.add( scan.nextInt() ); break; case 2 : System.out.println("Nodes = "+ sgt.size()); break; case 3 : System.out.println("Enter integer element to search"); System.out.println("Search result : "+ sgt.search( scan.nextInt() )); break; case 4 : System.out.println("Empty status = "+ sgt.isEmpty()); break; case 5 : System.out.println("\nTree cleared\n"); sgt.makeEmpty(); break; default : System.out.println("Wrong Entry \n "); break; } /* Display tree */ System.out.print("\nPost order : "); sgt.postorder(); System.out.print("\nPre order : "); sgt.preorder(); System.out.print("\nIn order : "); sgt.inorder(); System.out.println("\nDo you want to continue (Type y or n) \n"); ch = scan.next().charAt(0); } while (ch == 'Y'|| ch == 'y'); } }
ScapeGoat Tree Test ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 34 Post order : 34 Pre order : 34 In order : 34 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 67 Post order : 67 34 Pre order : 34 67 In order : 34 67 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 11 Post order : 11 67 34 Pre order : 34 11 67 In order : 11 34 67 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 24 Post order : 24 11 67 34 Pre order : 34 11 24 67 In order : 11 24 34 67 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 6 Post order : 6 24 11 67 34 Pre order : 34 11 6 24 67 In order : 6 11 24 34 67 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 97 Post order : 6 24 11 97 67 34 Pre order : 34 11 6 24 67 97 In order : 6 11 24 34 67 97 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 12 Post order : 6 12 24 11 97 67 34 Pre order : 34 11 6 24 12 67 97 In order : 6 11 12 24 34 67 97 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 57 Post order : 6 12 24 11 57 97 67 34 Pre order : 34 11 6 24 12 67 57 97 In order : 6 11 12 24 34 57 67 97 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 2 Nodes = 8 Post order : 6 12 24 11 57 97 67 34 Pre order : 34 11 6 24 12 67 57 97 In order : 6 11 12 24 34 57 67 97 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 3 Enter integer element to search 57 Search result : true Post order : 6 12 24 11 57 97 67 34 Pre order : 34 11 6 24 12 67 57 97 In order : 6 11 12 24 34 57 67 97 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 5 Tree cleared Post order : Pre order : In order : Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 4 Empty status = true Post order : Pre order : In order : Do you want to continue (Type y or n) n
Related posts:
Rest Web service: Filter và Interceptor với Jersey 2.x (P2)
Java Program to Implement LinkedList API
Java Program to Implement Adjacency List
Java Program to Perform Insertion in a 2 Dimension K-D Tree
How to Read a File in Java
Java Program to Implement Ternary Search Tree
“Stream has already been operated upon or closed” Exception in Java
Allow user:password in URL
Get the workstation name or IP
Java Program to Implement Stack API
Spring Boot - Tracing Micro Service Logs
Getting Started with Custom Deserialization in Jackson
Java Program to Find the Shortest Path Between Two Vertices Using Dijkstra’s Algorithm
Generic Constructors in Java
Spring’s RequestBody and ResponseBody Annotations
Multi Dimensional ArrayList in Java
Java Program to Implement PriorityBlockingQueue API
Comparing getPath(), getAbsolutePath(), and getCanonicalPath() in Java
Runnable vs. Callable in Java
Java Program to Implement a Binary Search Tree using Linked Lists
Java Program to Solve any Linear Equations
The Difference Between map() and flatMap()
Guide to @ConfigurationProperties in Spring Boot
Java Program to Implement HashTable API
A Custom Media Type for a Spring REST API
Comparing Two HashMaps in Java
Bootstrapping Hibernate 5 with Spring
Use Liquibase to Safely Evolve Your Database Schema
A Quick Guide to Spring MVC Matrix Variables
Initialize a HashMap in Java
How to Manually Authenticate User with Spring Security
Simple Single Sign-On with Spring Security OAuth2