This is a Java Program to implement ScapeGoat Tree. A scapegoat tree is a self-balancing binary search tree which provides worst-case O(log n) lookup time, and O(log n) amortized insertion and deletion time.
Here is the source code of the Java program to implement ScapeGoat tree. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
/*
* Java Program to Implement ScapeGoat Tree
*/
import java.util.Scanner;
/* Class SGTNode */
class SGTNode
{
SGTNode right, left, parent;
int value;
/* Constructor */
public SGTNode(int val)
{
value = val;
}
}
/* Class ScapeGoatTree */
class ScapeGoatTree
{
private SGTNode root;
private int n, q;
/* Constructor */
public ScapeGoatTree()
{
root = null;
// size = 0
n = 0;
}
/* Function to check if tree is empty */
public boolean isEmpty()
{
return root == null;
}
/* Function to clear tree */
public void makeEmpty()
{
root = null;
n = 0;
}
/* Function to count number of nodes recursively */
private int size(SGTNode r)
{
if (r == null)
return 0;
else
{
int l = 1;
l += size(r.left);
l += size(r.right);
return l;
}
}
/* Functions to search for an element */
public boolean search(int val)
{
return search(root, val);
}
/* Function to search for an element recursively */
private boolean search(SGTNode r, int val)
{
boolean found = false;
while ((r != null) && !found)
{
int rval = r.value;
if (val < rval)
r = r.left;
else if (val > rval)
r = r.right;
else
{
found = true;
break;
}
found = search(r, val);
}
return found;
}
/* Function to return current size of tree */
public int size()
{
return n;
}
/* Function for inorder traversal */
public void inorder()
{
inorder(root);
}
private void inorder(SGTNode r)
{
if (r != null)
{
inorder(r.left);
System.out.print(r.value +" ");
inorder(r.right);
}
}
/* Function for preorder traversal */
public void preorder()
{
preorder(root);
}
private void preorder(SGTNode r)
{
if (r != null)
{
System.out.print(r.value +" ");
preorder(r.left);
preorder(r.right);
}
}
/* Function for postorder traversal */
public void postorder()
{
postorder(root);
}
private void postorder(SGTNode r)
{
if (r != null)
{
postorder(r.left);
postorder(r.right);
System.out.print(r.value +" ");
}
}
private static final int log32(int q)
{
final double log23 = 2.4663034623764317;
return (int)Math.ceil(log23*Math.log(q));
}
/* Function to insert an element */
public boolean add(int x)
{
/* first do basic insertion keeping track of depth */
SGTNode u = new SGTNode(x);
int d = addWithDepth(u);
if (d > log32(q)) {
/* depth exceeded, find scapegoat */
SGTNode w = u.parent;
while (3*size(w) <= 2*size(w.parent))
w = w.parent;
rebuild(w.parent);
}
return d >= 0;
}
/* Function to rebuild tree from node u */
protected void rebuild(SGTNode u)
{
int ns = size(u);
SGTNode p = u.parent;
SGTNode[] a = new SGTNode[ns];
packIntoArray(u, a, 0);
if (p == null)
{
root = buildBalanced(a, 0, ns);
root.parent = null;
}
else if (p.right == u)
{
p.right = buildBalanced(a, 0, ns);
p.right.parent = p;
}
else
{
p.left = buildBalanced(a, 0, ns);
p.left.parent = p;
}
}
/* Function to packIntoArray */
protected int packIntoArray(SGTNode u, SGTNode[] a, int i)
{
if (u == null)
{
return i;
}
i = packIntoArray(u.left, a, i);
a[i++] = u;
return packIntoArray(u.right, a, i);
}
/* Function to build balanced nodes */
protected SGTNode buildBalanced(SGTNode[] a, int i, int ns)
{
if (ns == 0)
return null;
int m = ns / 2;
a[i + m].left = buildBalanced(a, i, m);
if (a[i + m].left != null)
a[i + m].left.parent = a[i + m];
a[i + m].right = buildBalanced(a, i + m + 1, ns - m - 1);
if (a[i + m].right != null)
a[i + m].right.parent = a[i + m];
return a[i + m];
}
/* Function add with depth */
public int addWithDepth(SGTNode u)
{
SGTNode w = root;
if (w == null)
{
root = u;
n++;
q++;
return 0;
}
boolean done = false;
int d = 0;
do {
if (u.value < w.value)
{
if (w.left == null)
{
w.left = u;
u.parent = w;
done = true;
}
else
{
w = w.left;
}
}
else if (u.value > w.value)
{
if (w.right == null)
{
w.right = u;
u.parent = w;
done = true;
}
w = w.right;
}
else
{
return -1;
}
d++;
} while (!done);
n++;
q++;
return d;
}
}
public class ScapeGoatTreeTest
{
public static void main(String[] args)
{
Scanner scan = new Scanner(System.in);
/* Creating object of ScapeGoatTree */
ScapeGoatTree sgt = new ScapeGoatTree();
System.out.println("ScapeGoat Tree Test\n");
char ch;
/* Perform tree operations */
do
{
System.out.println("\nScapeGoat Tree Operations\n");
System.out.println("1. insert ");
System.out.println("2. count nodes");
System.out.println("3. search");
System.out.println("4. check empty");
System.out.println("5. make empty");
int choice = scan.nextInt();
switch (choice)
{
case 1 :
System.out.println("Enter integer element to insert");
sgt.add( scan.nextInt() );
break;
case 2 :
System.out.println("Nodes = "+ sgt.size());
break;
case 3 :
System.out.println("Enter integer element to search");
System.out.println("Search result : "+ sgt.search( scan.nextInt() ));
break;
case 4 :
System.out.println("Empty status = "+ sgt.isEmpty());
break;
case 5 :
System.out.println("\nTree cleared\n");
sgt.makeEmpty();
break;
default :
System.out.println("Wrong Entry \n ");
break;
}
/* Display tree */
System.out.print("\nPost order : ");
sgt.postorder();
System.out.print("\nPre order : ");
sgt.preorder();
System.out.print("\nIn order : ");
sgt.inorder();
System.out.println("\nDo you want to continue (Type y or n) \n");
ch = scan.next().charAt(0);
} while (ch == 'Y'|| ch == 'y');
}
}
ScapeGoat Tree Test ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 34 Post order : 34 Pre order : 34 In order : 34 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 67 Post order : 67 34 Pre order : 34 67 In order : 34 67 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 11 Post order : 11 67 34 Pre order : 34 11 67 In order : 11 34 67 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 24 Post order : 24 11 67 34 Pre order : 34 11 24 67 In order : 11 24 34 67 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 6 Post order : 6 24 11 67 34 Pre order : 34 11 6 24 67 In order : 6 11 24 34 67 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 97 Post order : 6 24 11 97 67 34 Pre order : 34 11 6 24 67 97 In order : 6 11 24 34 67 97 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 12 Post order : 6 12 24 11 97 67 34 Pre order : 34 11 6 24 12 67 97 In order : 6 11 12 24 34 67 97 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 57 Post order : 6 12 24 11 57 97 67 34 Pre order : 34 11 6 24 12 67 57 97 In order : 6 11 12 24 34 57 67 97 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 2 Nodes = 8 Post order : 6 12 24 11 57 97 67 34 Pre order : 34 11 6 24 12 67 57 97 In order : 6 11 12 24 34 57 67 97 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 3 Enter integer element to search 57 Search result : true Post order : 6 12 24 11 57 97 67 34 Pre order : 34 11 6 24 12 67 57 97 In order : 6 11 12 24 34 57 67 97 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 5 Tree cleared Post order : Pre order : In order : Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 4 Empty status = true Post order : Pre order : In order : Do you want to continue (Type y or n) n
Related posts:
Java – Combine Multiple Collections
HandlerAdapters in Spring MVC
Finding the Differences Between Two Lists in Java
Using a List of Values in a JdbcTemplate IN Clause
Biểu thức Lambda trong Java 8 – Lambda Expressions
Java Program to Perform Insertion in a 2 Dimension K-D Tree
Spring REST API + OAuth2 + Angular
Java Program to Implement Interpolation Search Algorithm
Generic Constructors in Java
New Features in Java 10
Java Program to Implement Adjacency Matrix
Introduction to the Java NIO2 File API
Java Program to Implement TreeSet API
Cài đặt và sử dụng Swagger UI
Java Program to Find Maximum Element in an Array using Binary Search
Default Password Encoder in Spring Security 5
Java Program to Find the Vertex Connectivity of a Graph
Model, ModelMap, and ModelAndView in Spring MVC
Handle EML file with JavaMail
Spring Boot - Exception Handling
A Quick Guide to Spring MVC Matrix Variables
Tránh lỗi ConcurrentModificationException trong Java như thế nào?
Xử lý ngoại lệ đối với trường hợp ghi đè phương thức trong java
Spring Security Authentication Provider
Removing all duplicates from a List in Java
Compare Two JSON Objects with Jackson
Chuyển đổi Array sang ArrayList và ngược lại
Guide to Guava Multimap
Java Program to Implement Miller Rabin Primality Test Algorithm
Dockerizing a Spring Boot Application
Làm thế nào tạo instance của một class mà không gọi từ khóa new?
A Quick JUnit vs TestNG Comparison