This is a Java Program to implement ScapeGoat Tree. A scapegoat tree is a self-balancing binary search tree which provides worst-case O(log n) lookup time, and O(log n) amortized insertion and deletion time.
Here is the source code of the Java program to implement ScapeGoat tree. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
/*
* Java Program to Implement ScapeGoat Tree
*/
import java.util.Scanner;
/* Class SGTNode */
class SGTNode
{
SGTNode right, left, parent;
int value;
/* Constructor */
public SGTNode(int val)
{
value = val;
}
}
/* Class ScapeGoatTree */
class ScapeGoatTree
{
private SGTNode root;
private int n, q;
/* Constructor */
public ScapeGoatTree()
{
root = null;
// size = 0
n = 0;
}
/* Function to check if tree is empty */
public boolean isEmpty()
{
return root == null;
}
/* Function to clear tree */
public void makeEmpty()
{
root = null;
n = 0;
}
/* Function to count number of nodes recursively */
private int size(SGTNode r)
{
if (r == null)
return 0;
else
{
int l = 1;
l += size(r.left);
l += size(r.right);
return l;
}
}
/* Functions to search for an element */
public boolean search(int val)
{
return search(root, val);
}
/* Function to search for an element recursively */
private boolean search(SGTNode r, int val)
{
boolean found = false;
while ((r != null) && !found)
{
int rval = r.value;
if (val < rval)
r = r.left;
else if (val > rval)
r = r.right;
else
{
found = true;
break;
}
found = search(r, val);
}
return found;
}
/* Function to return current size of tree */
public int size()
{
return n;
}
/* Function for inorder traversal */
public void inorder()
{
inorder(root);
}
private void inorder(SGTNode r)
{
if (r != null)
{
inorder(r.left);
System.out.print(r.value +" ");
inorder(r.right);
}
}
/* Function for preorder traversal */
public void preorder()
{
preorder(root);
}
private void preorder(SGTNode r)
{
if (r != null)
{
System.out.print(r.value +" ");
preorder(r.left);
preorder(r.right);
}
}
/* Function for postorder traversal */
public void postorder()
{
postorder(root);
}
private void postorder(SGTNode r)
{
if (r != null)
{
postorder(r.left);
postorder(r.right);
System.out.print(r.value +" ");
}
}
private static final int log32(int q)
{
final double log23 = 2.4663034623764317;
return (int)Math.ceil(log23*Math.log(q));
}
/* Function to insert an element */
public boolean add(int x)
{
/* first do basic insertion keeping track of depth */
SGTNode u = new SGTNode(x);
int d = addWithDepth(u);
if (d > log32(q)) {
/* depth exceeded, find scapegoat */
SGTNode w = u.parent;
while (3*size(w) <= 2*size(w.parent))
w = w.parent;
rebuild(w.parent);
}
return d >= 0;
}
/* Function to rebuild tree from node u */
protected void rebuild(SGTNode u)
{
int ns = size(u);
SGTNode p = u.parent;
SGTNode[] a = new SGTNode[ns];
packIntoArray(u, a, 0);
if (p == null)
{
root = buildBalanced(a, 0, ns);
root.parent = null;
}
else if (p.right == u)
{
p.right = buildBalanced(a, 0, ns);
p.right.parent = p;
}
else
{
p.left = buildBalanced(a, 0, ns);
p.left.parent = p;
}
}
/* Function to packIntoArray */
protected int packIntoArray(SGTNode u, SGTNode[] a, int i)
{
if (u == null)
{
return i;
}
i = packIntoArray(u.left, a, i);
a[i++] = u;
return packIntoArray(u.right, a, i);
}
/* Function to build balanced nodes */
protected SGTNode buildBalanced(SGTNode[] a, int i, int ns)
{
if (ns == 0)
return null;
int m = ns / 2;
a[i + m].left = buildBalanced(a, i, m);
if (a[i + m].left != null)
a[i + m].left.parent = a[i + m];
a[i + m].right = buildBalanced(a, i + m + 1, ns - m - 1);
if (a[i + m].right != null)
a[i + m].right.parent = a[i + m];
return a[i + m];
}
/* Function add with depth */
public int addWithDepth(SGTNode u)
{
SGTNode w = root;
if (w == null)
{
root = u;
n++;
q++;
return 0;
}
boolean done = false;
int d = 0;
do {
if (u.value < w.value)
{
if (w.left == null)
{
w.left = u;
u.parent = w;
done = true;
}
else
{
w = w.left;
}
}
else if (u.value > w.value)
{
if (w.right == null)
{
w.right = u;
u.parent = w;
done = true;
}
w = w.right;
}
else
{
return -1;
}
d++;
} while (!done);
n++;
q++;
return d;
}
}
public class ScapeGoatTreeTest
{
public static void main(String[] args)
{
Scanner scan = new Scanner(System.in);
/* Creating object of ScapeGoatTree */
ScapeGoatTree sgt = new ScapeGoatTree();
System.out.println("ScapeGoat Tree Test\n");
char ch;
/* Perform tree operations */
do
{
System.out.println("\nScapeGoat Tree Operations\n");
System.out.println("1. insert ");
System.out.println("2. count nodes");
System.out.println("3. search");
System.out.println("4. check empty");
System.out.println("5. make empty");
int choice = scan.nextInt();
switch (choice)
{
case 1 :
System.out.println("Enter integer element to insert");
sgt.add( scan.nextInt() );
break;
case 2 :
System.out.println("Nodes = "+ sgt.size());
break;
case 3 :
System.out.println("Enter integer element to search");
System.out.println("Search result : "+ sgt.search( scan.nextInt() ));
break;
case 4 :
System.out.println("Empty status = "+ sgt.isEmpty());
break;
case 5 :
System.out.println("\nTree cleared\n");
sgt.makeEmpty();
break;
default :
System.out.println("Wrong Entry \n ");
break;
}
/* Display tree */
System.out.print("\nPost order : ");
sgt.postorder();
System.out.print("\nPre order : ");
sgt.preorder();
System.out.print("\nIn order : ");
sgt.inorder();
System.out.println("\nDo you want to continue (Type y or n) \n");
ch = scan.next().charAt(0);
} while (ch == 'Y'|| ch == 'y');
}
}
ScapeGoat Tree Test ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 34 Post order : 34 Pre order : 34 In order : 34 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 67 Post order : 67 34 Pre order : 34 67 In order : 34 67 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 11 Post order : 11 67 34 Pre order : 34 11 67 In order : 11 34 67 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 24 Post order : 24 11 67 34 Pre order : 34 11 24 67 In order : 11 24 34 67 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 6 Post order : 6 24 11 67 34 Pre order : 34 11 6 24 67 In order : 6 11 24 34 67 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 97 Post order : 6 24 11 97 67 34 Pre order : 34 11 6 24 67 97 In order : 6 11 24 34 67 97 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 12 Post order : 6 12 24 11 97 67 34 Pre order : 34 11 6 24 12 67 97 In order : 6 11 12 24 34 67 97 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 1 Enter integer element to insert 57 Post order : 6 12 24 11 57 97 67 34 Pre order : 34 11 6 24 12 67 57 97 In order : 6 11 12 24 34 57 67 97 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 2 Nodes = 8 Post order : 6 12 24 11 57 97 67 34 Pre order : 34 11 6 24 12 67 57 97 In order : 6 11 12 24 34 57 67 97 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 3 Enter integer element to search 57 Search result : true Post order : 6 12 24 11 57 97 67 34 Pre order : 34 11 6 24 12 67 57 97 In order : 6 11 12 24 34 57 67 97 Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 5 Tree cleared Post order : Pre order : In order : Do you want to continue (Type y or n) y ScapeGoat Tree Operations 1. insert 2. count nodes 3. search 4. check empty 5. make empty 4 Empty status = true Post order : Pre order : In order : Do you want to continue (Type y or n) n
Related posts:
Java Program to Implement Bresenham Line Algorithm
Guide to the Java Clock Class
Java Program to Implement Insertion Sort
Java Program to Represent Graph Using 2D Arrays
The Dining Philosophers Problem in Java
Spring Boot - Bootstrapping
Ép kiểu trong Java (Type casting)
Java Program to Check whether Directed Graph is Connected using DFS
Java Program to Generate a Random UnDirected Graph for a Given Number of Edges
Read an Outlook MSG file
Spring Boot - Rest Controller Unit Test
Lớp Collectors trong Java 8
Java Program to Implement Selection Sort
Ignore Null Fields with Jackson
Java Program to Implement Sparse Array
Java Program to Print the Kind of Rotation the AVL Tree is Undergoing
Java Optional as Return Type
Hướng dẫn Java Design Pattern – Transfer Object
Hướng dẫn Java Design Pattern – Interpreter
New Features in Java 12
Java Program to Find Hamiltonian Cycle in an UnWeighted Graph
Java Program to Implement Gauss Jordan Elimination
Setting Up Swagger 2 with a Spring REST API
Java – Write a Reader to File
Spring Boot - Apache Kafka
Tạo số và chuỗi ngẫu nhiên trong Java
Versioning a REST API
Java Program to Implement Heap’s Algorithm for Permutation of N Numbers
Java Program to Decode a Message Encoded Using Playfair Cipher
Giới thiệu Google Guice – Injection, Scope
Jackson Annotation Examples
Java Program to Implement Sparse Matrix