This is a Java Program to implement Weight Balanced Tree. A weight-balanced binary tree is a binary tree which is balanced based on knowledge of the probabilities of searching for each individual node. Within each subtree, the node with the highest weight appears at the root. This can result in more efficient searching performance.
Construction of such a tree is similar to that of a Treap, but node weights are chosen randomly in the latter.
Here is the source code of the Java program to implement Weight Balanced Tree. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
/** * Java Program to Implement Weight Balanced Tree **/ import java.util.Scanner; import java.util.Random; /** Class WBTNode **/ class WBTNode { WBTNode left, right; int weight, element; /** Constructor **/ public WBTNode(int ele, int wt) { this(ele, wt, null, null); } /** Constructor **/ public WBTNode(int ele, int wt, WBTNode left, WBTNode right) { this.element = ele; this.left = left; this.right = right; this.weight = wt; } } /** Class WeightBalancedTree **/ class WeightBalancedTree { private WBTNode root; private static WBTNode nil = new WBTNode(0, Integer.MAX_VALUE); /** Constructor **/ public WeightBalancedTree() { root = nil; } /** Function to check if tree is empty **/ public boolean isEmpty() { return root == nil; } /** clear tree **/ public void clear() { root = nil; } /** Functions to insert data **/ public void insert(int X, int WT) { root = insert(X, WT, root); } private WBTNode insert(int X, int WT, WBTNode T) { if (T == nil) return new WBTNode(X, WT, nil, nil); else if (X < T.element) { T.left = insert(X, WT, T.left); if (T.left.weight < T.weight) { WBTNode L = T.left; T.left = L.right; L.right = T; return L; } } else if (X > T.element) { T.right = insert(X, WT, T.right); if (T.right.weight < T.weight) { WBTNode R = T.right; T.right = R.left; R.left = T; return R; } } return T; } /** Functions to count number of nodes **/ public int countNodes() { return countNodes(root); } private int countNodes(WBTNode r) { if (r == nil) return 0; else { int l = 1; l += countNodes(r.left); l += countNodes(r.right); return l; } } /** Functions to search for an element **/ public boolean search(int val) { return search(root, val); } private boolean search(WBTNode r, int val) { boolean found = false; while ((r != nil) && !found) { int rval = r.element; if (val < rval) r = r.left; else if (val > rval) r = r.right; else { found = true; break; } found = search(r, val); } return found; } /** Function for inorder traversal **/ public void inorder() { inorder(root); } private void inorder(WBTNode r) { if (r != nil) { inorder(r.left); System.out.print(r.element +" "); inorder(r.right); } } /** Function for preorder traversal **/ public void preorder() { preorder(root); } private void preorder(WBTNode r) { if (r != nil) { System.out.print(r.element +" "); preorder(r.left); preorder(r.right); } } /** Function for postorder traversal **/ public void postorder() { postorder(root); } private void postorder(WBTNode r) { if (r != nil) { postorder(r.left); postorder(r.right); System.out.print(r.element +" "); } } } /** Class WeightBalancedTreeTest **/ public class WeightBalancedTreeTest { public static void main(String[] args) { Scanner scan = new Scanner(System.in); /** Creating object of WeightBalancedTree**/ WeightBalancedTree wbt = new WeightBalancedTree(); System.out.println("Weight Balanced TreeTest\n"); char ch; /** Perform tree operations **/ do { System.out.println("\nWeight Balanced TreeOperations\n"); System.out.println("1. insert "); System.out.println("2. search"); System.out.println("3. count nodes"); System.out.println("4. check empty"); System.out.println("5. clear"); int choice = scan.nextInt(); switch (choice) { case 1 : System.out.println("Enter integer element to insert and weight of the element"); wbt.insert( scan.nextInt(), scan.nextInt() ); break; case 2 : System.out.println("Enter integer element to search"); System.out.println("Search result : "+ wbt.search( scan.nextInt() )); break; case 3 : System.out.println("Nodes = "+ wbt.countNodes()); break; case 4 : System.out.println("Empty status = "+ wbt.isEmpty()); break; case 5 : System.out.println("\nWeightBalancedTreeCleared"); wbt.clear(); break; default : System.out.println("Wrong Entry \n "); break; } /** Display tree **/ System.out.print("\nPost order : "); wbt.postorder(); System.out.print("\nPre order : "); wbt.preorder(); System.out.print("\nIn order : "); wbt.inorder(); System.out.println("\nDo you want to continue (Type y or n) \n"); ch = scan.next().charAt(0); } while (ch == 'Y'|| ch == 'y'); } }
Weight Balanced TreeTest Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert and weight of the element 24 28 Post order : 24 Pre order : 24 In order : 24 Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert and weight of the element 5 6 Post order : 24 5 Pre order : 5 24 In order : 5 24 Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert and weight of the element 63 94 Post order : 63 24 5 Pre order : 5 24 63 In order : 5 24 63 Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert and weight of the element 14 6 Post order : 63 24 14 5 Pre order : 5 14 24 63 In order : 5 14 24 63 Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert and weight of the element 1 17 Post order : 1 63 24 14 5 Pre order : 5 1 14 24 63 In order : 1 5 14 24 63 Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert and weight of the element 70 91 Post order : 1 63 70 24 14 5 Pre order : 5 1 14 24 70 63 In order : 1 5 14 24 63 70 Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 2 Enter integer element to search 24 Search result : true Post order : 1 63 70 24 14 5 Pre order : 5 1 14 24 70 63 In order : 1 5 14 24 63 70 Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 3 Nodes = 6 Post order : 1 63 70 24 14 5 Pre order : 5 1 14 24 70 63 In order : 1 5 14 24 63 70 Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 5 WeightBalancedTreeCleared Post order : Pre order : In order : Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 4 Empty status = true Post order : Pre order : In order : Do you want to continue (Type y or n) n
Related posts:
Mảng (Array) trong Java
Spring Data Java 8 Support
Converting a Stack Trace to a String in Java
Java Program to Find the Nearest Neighbor Using K-D Tree Search
Finding Max/Min of a List or Collection
So sánh HashSet, LinkedHashSet và TreeSet trong Java
Java Program to Implement DelayQueue API
Introduction to the Java NIO2 File API
Comparing Dates in Java
Spring Boot - Tomcat Deployment
Spring Security Authentication Provider
Create a Custom Exception in Java
Java Program to Find Number of Articulation points in a Graph
Hướng dẫn Java Design Pattern – MVC
Inject Parameters into JUnit Jupiter Unit Tests
Vector trong Java
Java Program to Implement Adjacency Matrix
CharSequence vs. String in Java
Java Program to implement Bi Directional Map
Spring Boot - Securing Web Applications
Giới thiệu Google Guice – Aspect Oriented Programming (AOP)
Spring WebClient and OAuth2 Support
Guide to Escaping Characters in Java RegExps
Jackson JSON Views
Java Program to Solve Set Cover Problem assuming at max 2 Elements in a Subset
Java Program to Perform Addition Operation Using Bitwise Operators
Exploring the Spring 5 WebFlux URL Matching
Hướng dẫn sử dụng lớp Console trong java
Java Program to Implement Hash Tables Chaining with Binary Trees
Java Program to Implement Treap
Java Program to Generate Date Between Given Range
Create a Custom Auto-Configuration with Spring Boot