This is a Java Program to implement Weight Balanced Tree. A weight-balanced binary tree is a binary tree which is balanced based on knowledge of the probabilities of searching for each individual node. Within each subtree, the node with the highest weight appears at the root. This can result in more efficient searching performance.
Construction of such a tree is similar to that of a Treap, but node weights are chosen randomly in the latter.
Here is the source code of the Java program to implement Weight Balanced Tree. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
/** * Java Program to Implement Weight Balanced Tree **/ import java.util.Scanner; import java.util.Random; /** Class WBTNode **/ class WBTNode { WBTNode left, right; int weight, element; /** Constructor **/ public WBTNode(int ele, int wt) { this(ele, wt, null, null); } /** Constructor **/ public WBTNode(int ele, int wt, WBTNode left, WBTNode right) { this.element = ele; this.left = left; this.right = right; this.weight = wt; } } /** Class WeightBalancedTree **/ class WeightBalancedTree { private WBTNode root; private static WBTNode nil = new WBTNode(0, Integer.MAX_VALUE); /** Constructor **/ public WeightBalancedTree() { root = nil; } /** Function to check if tree is empty **/ public boolean isEmpty() { return root == nil; } /** clear tree **/ public void clear() { root = nil; } /** Functions to insert data **/ public void insert(int X, int WT) { root = insert(X, WT, root); } private WBTNode insert(int X, int WT, WBTNode T) { if (T == nil) return new WBTNode(X, WT, nil, nil); else if (X < T.element) { T.left = insert(X, WT, T.left); if (T.left.weight < T.weight) { WBTNode L = T.left; T.left = L.right; L.right = T; return L; } } else if (X > T.element) { T.right = insert(X, WT, T.right); if (T.right.weight < T.weight) { WBTNode R = T.right; T.right = R.left; R.left = T; return R; } } return T; } /** Functions to count number of nodes **/ public int countNodes() { return countNodes(root); } private int countNodes(WBTNode r) { if (r == nil) return 0; else { int l = 1; l += countNodes(r.left); l += countNodes(r.right); return l; } } /** Functions to search for an element **/ public boolean search(int val) { return search(root, val); } private boolean search(WBTNode r, int val) { boolean found = false; while ((r != nil) && !found) { int rval = r.element; if (val < rval) r = r.left; else if (val > rval) r = r.right; else { found = true; break; } found = search(r, val); } return found; } /** Function for inorder traversal **/ public void inorder() { inorder(root); } private void inorder(WBTNode r) { if (r != nil) { inorder(r.left); System.out.print(r.element +" "); inorder(r.right); } } /** Function for preorder traversal **/ public void preorder() { preorder(root); } private void preorder(WBTNode r) { if (r != nil) { System.out.print(r.element +" "); preorder(r.left); preorder(r.right); } } /** Function for postorder traversal **/ public void postorder() { postorder(root); } private void postorder(WBTNode r) { if (r != nil) { postorder(r.left); postorder(r.right); System.out.print(r.element +" "); } } } /** Class WeightBalancedTreeTest **/ public class WeightBalancedTreeTest { public static void main(String[] args) { Scanner scan = new Scanner(System.in); /** Creating object of WeightBalancedTree**/ WeightBalancedTree wbt = new WeightBalancedTree(); System.out.println("Weight Balanced TreeTest\n"); char ch; /** Perform tree operations **/ do { System.out.println("\nWeight Balanced TreeOperations\n"); System.out.println("1. insert "); System.out.println("2. search"); System.out.println("3. count nodes"); System.out.println("4. check empty"); System.out.println("5. clear"); int choice = scan.nextInt(); switch (choice) { case 1 : System.out.println("Enter integer element to insert and weight of the element"); wbt.insert( scan.nextInt(), scan.nextInt() ); break; case 2 : System.out.println("Enter integer element to search"); System.out.println("Search result : "+ wbt.search( scan.nextInt() )); break; case 3 : System.out.println("Nodes = "+ wbt.countNodes()); break; case 4 : System.out.println("Empty status = "+ wbt.isEmpty()); break; case 5 : System.out.println("\nWeightBalancedTreeCleared"); wbt.clear(); break; default : System.out.println("Wrong Entry \n "); break; } /** Display tree **/ System.out.print("\nPost order : "); wbt.postorder(); System.out.print("\nPre order : "); wbt.preorder(); System.out.print("\nIn order : "); wbt.inorder(); System.out.println("\nDo you want to continue (Type y or n) \n"); ch = scan.next().charAt(0); } while (ch == 'Y'|| ch == 'y'); } }
Weight Balanced TreeTest Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert and weight of the element 24 28 Post order : 24 Pre order : 24 In order : 24 Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert and weight of the element 5 6 Post order : 24 5 Pre order : 5 24 In order : 5 24 Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert and weight of the element 63 94 Post order : 63 24 5 Pre order : 5 24 63 In order : 5 24 63 Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert and weight of the element 14 6 Post order : 63 24 14 5 Pre order : 5 14 24 63 In order : 5 14 24 63 Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert and weight of the element 1 17 Post order : 1 63 24 14 5 Pre order : 5 1 14 24 63 In order : 1 5 14 24 63 Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 1 Enter integer element to insert and weight of the element 70 91 Post order : 1 63 70 24 14 5 Pre order : 5 1 14 24 70 63 In order : 1 5 14 24 63 70 Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 2 Enter integer element to search 24 Search result : true Post order : 1 63 70 24 14 5 Pre order : 5 1 14 24 70 63 In order : 1 5 14 24 63 70 Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 3 Nodes = 6 Post order : 1 63 70 24 14 5 Pre order : 5 1 14 24 70 63 In order : 1 5 14 24 63 70 Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 5 WeightBalancedTreeCleared Post order : Pre order : In order : Do you want to continue (Type y or n) y Weight Balanced TreeOperations 1. insert 2. search 3. count nodes 4. check empty 5. clear 4 Empty status = true Post order : Pre order : In order : Do you want to continue (Type y or n) n
Related posts:
Java Program to Perform Partition of an Integer in All Possible Ways
Spring Boot - Service Components
Custom Exception trong Java
Java Program to Perform Uniform Binary Search
Jackson – JsonMappingException (No serializer found for class)
Java Program to Implement Quick sort
Mảng (Array) trong Java
New Features in Java 11
Java Program to Implement Efficient O(log n) Fibonacci generator
Java Program to Generate Random Partition out of a Given Set of Numbers or Characters
Java Program to Implement Knapsack Algorithm
Injecting Prototype Beans into a Singleton Instance in Spring
Java Program to Implement Sorted Circular Doubly Linked List
Multipart Upload with HttpClient 4
Spring WebClient Requests with Parameters
Object cloning trong java
Inheritance with Jackson
Java Program to implement Priority Queue
Java Program to Implement Gift Wrapping Algorithm in Two Dimensions
Java Program to Implement LinkedBlockingDeque API
Java Program to Implement Depth-limited Search
Java Program to Implement CountMinSketch
Uploading MultipartFile with Spring RestTemplate
An Introduction to Java.util.Hashtable Class
Spring Boot - Enabling HTTPS
Spring Security Form Login
Guide to the Java TransferQueue
REST Web service: HTTP Status Code và xử lý ngoại lệ RESTful web service với Jersey 2.x
Java Program to Search for an Element in a Binary Search Tree
Java Program to find the maximum subarray sum O(n^2) time(naive method)
Apache Commons Collections OrderedMap
Spring REST with a Zuul Proxy