This Java program is to Implement Johnson’s algorithm. Johnson’s algorithm is a way to find the shortest paths between all pairs of vertices in a sparse, edge weighted, directed graph. It allows some of the edge weights to be negative numbers, but no negative-weight cycles may exist. It works by using the Bellman–Ford algorithm to compute a transformation of the input graph that removes all negative weights, allowing Dijkstra’s algorithm to be used on the transformed graph.
Here is the source code of the Java program to implement Johnson algorithm. The Java program is successfully compiled and run on a Linux system. The program output is also shown below.
import java.util.InputMismatchException;
import java.util.Scanner;
public class JohnsonsAlgorithm
{
private int SOURCE_NODE;
private int numberOfNodes;
private int augmentedMatrix[][];
private int potential[];
private BellmanFord bellmanFord;
private DijkstraShortesPath dijsktraShortesPath;
private int[][] allPairShortestPath;
public static final int MAX_VALUE = 999;
public JohnsonsAlgorithm(int numberOfNodes)
{
this.numberOfNodes = numberOfNodes;
augmentedMatrix = new int[numberOfNodes + 2][numberOfNodes + 2];
SOURCE_NODE = numberOfNodes + 1;
potential = new int[numberOfNodes + 2];
bellmanFord = new BellmanFord(numberOfNodes + 1);
dijsktraShortesPath = new DijkstraShortesPath(numberOfNodes);
allPairShortestPath = new int[numberOfNodes + 1][numberOfNodes + 1];
}
public void johnsonsAlgorithms(int adjacencyMatrix[][])
{
computeAugmentedGraph(adjacencyMatrix);
bellmanFord.BellmanFordEvaluation(SOURCE_NODE, augmentedMatrix);
potential = bellmanFord.getDistances();
int reweightedGraph[][] = reweightGraph(adjacencyMatrix);
for (int i = 1; i <= numberOfNodes; i++)
{
for (int j = 1; j <= numberOfNodes; j++)
{
System.out.print(reweightedGraph[i][j] + "\t");
}
System.out.println();
}
for (int source = 1; source <= numberOfNodes; source++)
{
dijsktraShortesPath.dijkstraShortestPath(source, reweightedGraph);
int[] result = dijsktraShortesPath.getDistances();
for (int destination = 1; destination <= numberOfNodes; destination++)
{
allPairShortestPath[destination] = result[destination]
+ potential[destination] - potential;
}
}
System.out.println();
for (int i = 1; i<= numberOfNodes; i++)
{
System.out.print("\t"+i);
}
System.out.println();
for (int source = 1; source <= numberOfNodes; source++)
{
System.out.print( source +"\t" );
for (int destination = 1; destination <= numberOfNodes; destination++)
{
System.out.print(allPairShortestPath[destination]+ "\t");
}
System.out.println();
}
}
private void computeAugmentedGraph(int adjacencyMatrix[][])
{
for (int source = 1; source <= numberOfNodes; source++)
{
for (int destination = 1; destination <= numberOfNodes; destination++)
{
augmentedMatrix[destination] = adjacencyMatrix[destination];
}
}
for (int destination = 1; destination <= numberOfNodes; destination++)
{
augmentedMatrix[SOURCE_NODE][destination] = 0;
}
}
private int[][] reweightGraph(int adjacencyMatrix[][])
{
int[][] result = new int[numberOfNodes + 1][numberOfNodes + 1];
for (int source = 1; source <= numberOfNodes; source++)
{
for (int destination = 1; destination <= numberOfNodes; destination++)
{
result[destination] = adjacencyMatrix[destination]
+ potential - potential[destination];
}
}
return result;
}
public static void main(String... arg)
{
int adjacency_matrix[][];
int number_of_vertices;
Scanner scan = new Scanner(System.in);
try
{
System.out.println("Enter the number of vertices");
number_of_vertices = scan.nextInt();
adjacency_matrix = new int[number_of_vertices + 1][number_of_vertices + 1];
System.out.println("Enter the Weighted Matrix for the graph");
for (int i = 1; i <= number_of_vertices; i++)
{
for (int j = 1; j <= number_of_vertices; j++)
{
adjacency_matrix[i][j] = scan.nextInt();
if (i == j)
{
adjacency_matrix[i][j] = 0;
continue;
}
if (adjacency_matrix[i][j] == 0)
{
adjacency_matrix[i][j] = MAX_VALUE;
}
}
}
JohnsonsAlgorithm johnsonsAlgorithm = new JohnsonsAlgorithm(number_of_vertices);
johnsonsAlgorithm.johnsonsAlgorithms(adjacency_matrix);
} catch (InputMismatchException inputMismatch)
{
System.out.println("Wrong Input Format");
}
scan.close();
}
}
class BellmanFord
{
private int distances[];
private int numberofvertices;
public static final int MAX_VALUE = 999;
public BellmanFord(int numberofvertices)
{
this.numberofvertices = numberofvertices;
distances = new int[numberofvertices + 1];
}
public void BellmanFordEvaluation(int source, int adjacencymatrix[][])
{
for (int node = 1; node <= numberofvertices; node++)
{
distances[node] = MAX_VALUE;
}
distances = 0;
for (int node = 1; node <= numberofvertices - 1; node++)
{
for (int sourcenode = 1; sourcenode <= numberofvertices; sourcenode++)
{
for (int destinationnode = 1; destinationnode <= numberofvertices; destinationnode++)
{
if (adjacencymatrix[sourcenode][destinationnode] != MAX_VALUE)
{
if (distances[destinationnode] > distances[sourcenode]
+ adjacencymatrix[sourcenode][destinationnode])
{
distances[destinationnode] = distances[sourcenode]
+ adjacencymatrix[sourcenode][destinationnode];
}
}
}
}
}
for (int sourcenode = 1; sourcenode <= numberofvertices; sourcenode++)
{
for (int destinationnode = 1; destinationnode <= numberofvertices; destinationnode++)
{
if (adjacencymatrix[sourcenode][destinationnode] != MAX_VALUE)
{
if (distances[destinationnode] > distances[sourcenode]
+ adjacencymatrix[sourcenode][destinationnode])
System.out.println("The Graph contains negative egde cycle");
}
}
}
}
public int[] getDistances()
{
return distances;
}
}
class DijkstraShortesPath
{
private boolean settled[];
private boolean unsettled[];
private int distances[];
private int adjacencymatrix[][];
private int numberofvertices;
public static final int MAX_VALUE = 999;
public DijkstraShortesPath(int numberofvertices)
{
this.numberofvertices = numberofvertices;
}
public void dijkstraShortestPath(int source, int adjacencymatrix[][])
{
this.settled = new boolean[numberofvertices + 1];
this.unsettled = new boolean[numberofvertices + 1];
this.distances = new int[numberofvertices + 1];
this.adjacencymatrix = new int[numberofvertices + 1][numberofvertices + 1];
int evaluationnode;
for (int vertex = 1; vertex <= numberofvertices; vertex++)
{
distances[vertex] = MAX_VALUE;
}
for (int sourcevertex = 1; sourcevertex <= numberofvertices; sourcevertex++)
{
for (int destinationvertex = 1; destinationvertex <= numberofvertices; destinationvertex++)
{
this.adjacencymatrix[sourcevertex][destinationvertex]
= adjacencymatrix[sourcevertex][destinationvertex];
}
}
unsettled = true;
distances = 0;
while (getUnsettledCount(unsettled) != 0)
{
evaluationnode = getNodeWithMinimumDistanceFromUnsettled(unsettled);
unsettled[evaluationnode] = false;
settled[evaluationnode] = true;
evaluateNeighbours(evaluationnode);
}
}
public int getUnsettledCount(boolean unsettled[])
{
int count = 0;
for (int vertex = 1; vertex <= numberofvertices; vertex++)
{
if (unsettled[vertex] == true)
{
count++;
}
}
return count;
}
public int getNodeWithMinimumDistanceFromUnsettled(boolean unsettled[])
{
int min = MAX_VALUE;
int node = 0;
for (int vertex = 1; vertex <= numberofvertices; vertex++)
{
if (unsettled[vertex] == true && distances[vertex] < min)
{
node = vertex;
min = distances[vertex];
}
}
return node;
}
public void evaluateNeighbours(int evaluationNode)
{
int edgeDistance = -1;
int newDistance = -1;
for (int destinationNode = 1; destinationNode <= numberofvertices; destinationNode++)
{
if (settled[destinationNode] == false)
{
if (adjacencymatrix[evaluationNode][destinationNode] != MAX_VALUE)
{
edgeDistance = adjacencymatrix[evaluationNode][destinationNode];
newDistance = distances[evaluationNode] + edgeDistance;
if (newDistance < distances[destinationNode])
{
distances[destinationNode] = newDistance;
}
unsettled[destinationNode] = true;
}
}
}
}
public int[] getDistances()
{
return distances;
}
}
$javac JohnsonsAlgorithm .java $java JohnsonsAlgorithm Enter the number of vertices 4 Enter the Weighted Matrix for the graph 0 0 3 0 2 0 0 0 0 7 0 1 6 0 0 0 All pair shortest path is 1 2 3 4 1 0 10 3 4 2 2 0 5 6 3 7 7 0 1 4 6 16 9 0
Related posts:
Java Program to Find Nearest Neighbor for Dynamic Data Set
Pagination and Sorting using Spring Data JPA
Set Interface trong Java
Spring Autowiring of Generic Types
Java InputStream to Byte Array and ByteBuffer
Làm thế nào tạo instance của một class mà không gọi từ khóa new?
Java Program to Solve Set Cover Problem assuming at max 2 Elements in a Subset
Toán tử trong java
Java Program to Implement Sorted Circular Doubly Linked List
Java Program to Implement Hash Tables with Linear Probing
Spring @Primary Annotation
Comparing Dates in Java
Java Program to Implement Meldable Heap
Java Program to Print the Kind of Rotation the AVL Tree is Undergoing
Debug a JavaMail Program
Remove HTML tags from a file to extract only the TEXT
Java Program to Check if a Matrix is Invertible
Java Program to Implement the Vigenere Cypher
Guide to Java 8’s Collectors
HttpAsyncClient Tutorial
Guide to the Synchronized Keyword in Java
Java Program to Find Number of Spanning Trees in a Complete Bipartite Graph
Guide to Spring Cloud Kubernetes
JUnit5 Programmatic Extension Registration with @RegisterExtension
Spring Cloud AWS – S3
Java Program to Implement Sieve Of Eratosthenes
Guide to UUID in Java
Java Program to implement Priority Queue
Using the Map.Entry Java Class
Spring Boot - Creating Docker Image
ExecutorService – Waiting for Threads to Finish
Java Program to Implement Word Wrap Problem