This Java program is to Implement Johnson’s algorithm. Johnson’s algorithm is a way to find the shortest paths between all pairs of vertices in a sparse, edge weighted, directed graph. It allows some of the edge weights to be negative numbers, but no negative-weight cycles may exist. It works by using the Bellman–Ford algorithm to compute a transformation of the input graph that removes all negative weights, allowing Dijkstra’s algorithm to be used on the transformed graph.
Here is the source code of the Java program to implement Johnson algorithm. The Java program is successfully compiled and run on a Linux system. The program output is also shown below.
import java.util.InputMismatchException; import java.util.Scanner; public class JohnsonsAlgorithm { private int SOURCE_NODE; private int numberOfNodes; private int augmentedMatrix[][]; private int potential[]; private BellmanFord bellmanFord; private DijkstraShortesPath dijsktraShortesPath; private int[][] allPairShortestPath; public static final int MAX_VALUE = 999; public JohnsonsAlgorithm(int numberOfNodes) { this.numberOfNodes = numberOfNodes; augmentedMatrix = new int[numberOfNodes + 2][numberOfNodes + 2]; SOURCE_NODE = numberOfNodes + 1; potential = new int[numberOfNodes + 2]; bellmanFord = new BellmanFord(numberOfNodes + 1); dijsktraShortesPath = new DijkstraShortesPath(numberOfNodes); allPairShortestPath = new int[numberOfNodes + 1][numberOfNodes + 1]; } public void johnsonsAlgorithms(int adjacencyMatrix[][]) { computeAugmentedGraph(adjacencyMatrix); bellmanFord.BellmanFordEvaluation(SOURCE_NODE, augmentedMatrix); potential = bellmanFord.getDistances(); int reweightedGraph[][] = reweightGraph(adjacencyMatrix); for (int i = 1; i <= numberOfNodes; i++) { for (int j = 1; j <= numberOfNodes; j++) { System.out.print(reweightedGraph[i][j] + "\t"); } System.out.println(); } for (int source = 1; source <= numberOfNodes; source++) { dijsktraShortesPath.dijkstraShortestPath(source, reweightedGraph); int[] result = dijsktraShortesPath.getDistances(); for (int destination = 1; destination <= numberOfNodes; destination++) { allPairShortestPath[destination] = result[destination] + potential[destination] - potential; } } System.out.println(); for (int i = 1; i<= numberOfNodes; i++) { System.out.print("\t"+i); } System.out.println(); for (int source = 1; source <= numberOfNodes; source++) { System.out.print( source +"\t" ); for (int destination = 1; destination <= numberOfNodes; destination++) { System.out.print(allPairShortestPath[destination]+ "\t"); } System.out.println(); } } private void computeAugmentedGraph(int adjacencyMatrix[][]) { for (int source = 1; source <= numberOfNodes; source++) { for (int destination = 1; destination <= numberOfNodes; destination++) { augmentedMatrix[destination] = adjacencyMatrix[destination]; } } for (int destination = 1; destination <= numberOfNodes; destination++) { augmentedMatrix[SOURCE_NODE][destination] = 0; } } private int[][] reweightGraph(int adjacencyMatrix[][]) { int[][] result = new int[numberOfNodes + 1][numberOfNodes + 1]; for (int source = 1; source <= numberOfNodes; source++) { for (int destination = 1; destination <= numberOfNodes; destination++) { result[destination] = adjacencyMatrix[destination] + potential - potential[destination]; } } return result; } public static void main(String... arg) { int adjacency_matrix[][]; int number_of_vertices; Scanner scan = new Scanner(System.in); try { System.out.println("Enter the number of vertices"); number_of_vertices = scan.nextInt(); adjacency_matrix = new int[number_of_vertices + 1][number_of_vertices + 1]; System.out.println("Enter the Weighted Matrix for the graph"); for (int i = 1; i <= number_of_vertices; i++) { for (int j = 1; j <= number_of_vertices; j++) { adjacency_matrix[i][j] = scan.nextInt(); if (i == j) { adjacency_matrix[i][j] = 0; continue; } if (adjacency_matrix[i][j] == 0) { adjacency_matrix[i][j] = MAX_VALUE; } } } JohnsonsAlgorithm johnsonsAlgorithm = new JohnsonsAlgorithm(number_of_vertices); johnsonsAlgorithm.johnsonsAlgorithms(adjacency_matrix); } catch (InputMismatchException inputMismatch) { System.out.println("Wrong Input Format"); } scan.close(); } } class BellmanFord { private int distances[]; private int numberofvertices; public static final int MAX_VALUE = 999; public BellmanFord(int numberofvertices) { this.numberofvertices = numberofvertices; distances = new int[numberofvertices + 1]; } public void BellmanFordEvaluation(int source, int adjacencymatrix[][]) { for (int node = 1; node <= numberofvertices; node++) { distances[node] = MAX_VALUE; } distances = 0; for (int node = 1; node <= numberofvertices - 1; node++) { for (int sourcenode = 1; sourcenode <= numberofvertices; sourcenode++) { for (int destinationnode = 1; destinationnode <= numberofvertices; destinationnode++) { if (adjacencymatrix[sourcenode][destinationnode] != MAX_VALUE) { if (distances[destinationnode] > distances[sourcenode] + adjacencymatrix[sourcenode][destinationnode]) { distances[destinationnode] = distances[sourcenode] + adjacencymatrix[sourcenode][destinationnode]; } } } } } for (int sourcenode = 1; sourcenode <= numberofvertices; sourcenode++) { for (int destinationnode = 1; destinationnode <= numberofvertices; destinationnode++) { if (adjacencymatrix[sourcenode][destinationnode] != MAX_VALUE) { if (distances[destinationnode] > distances[sourcenode] + adjacencymatrix[sourcenode][destinationnode]) System.out.println("The Graph contains negative egde cycle"); } } } } public int[] getDistances() { return distances; } } class DijkstraShortesPath { private boolean settled[]; private boolean unsettled[]; private int distances[]; private int adjacencymatrix[][]; private int numberofvertices; public static final int MAX_VALUE = 999; public DijkstraShortesPath(int numberofvertices) { this.numberofvertices = numberofvertices; } public void dijkstraShortestPath(int source, int adjacencymatrix[][]) { this.settled = new boolean[numberofvertices + 1]; this.unsettled = new boolean[numberofvertices + 1]; this.distances = new int[numberofvertices + 1]; this.adjacencymatrix = new int[numberofvertices + 1][numberofvertices + 1]; int evaluationnode; for (int vertex = 1; vertex <= numberofvertices; vertex++) { distances[vertex] = MAX_VALUE; } for (int sourcevertex = 1; sourcevertex <= numberofvertices; sourcevertex++) { for (int destinationvertex = 1; destinationvertex <= numberofvertices; destinationvertex++) { this.adjacencymatrix[sourcevertex][destinationvertex] = adjacencymatrix[sourcevertex][destinationvertex]; } } unsettled = true; distances = 0; while (getUnsettledCount(unsettled) != 0) { evaluationnode = getNodeWithMinimumDistanceFromUnsettled(unsettled); unsettled[evaluationnode] = false; settled[evaluationnode] = true; evaluateNeighbours(evaluationnode); } } public int getUnsettledCount(boolean unsettled[]) { int count = 0; for (int vertex = 1; vertex <= numberofvertices; vertex++) { if (unsettled[vertex] == true) { count++; } } return count; } public int getNodeWithMinimumDistanceFromUnsettled(boolean unsettled[]) { int min = MAX_VALUE; int node = 0; for (int vertex = 1; vertex <= numberofvertices; vertex++) { if (unsettled[vertex] == true && distances[vertex] < min) { node = vertex; min = distances[vertex]; } } return node; } public void evaluateNeighbours(int evaluationNode) { int edgeDistance = -1; int newDistance = -1; for (int destinationNode = 1; destinationNode <= numberofvertices; destinationNode++) { if (settled[destinationNode] == false) { if (adjacencymatrix[evaluationNode][destinationNode] != MAX_VALUE) { edgeDistance = adjacencymatrix[evaluationNode][destinationNode]; newDistance = distances[evaluationNode] + edgeDistance; if (newDistance < distances[destinationNode]) { distances[destinationNode] = newDistance; } unsettled[destinationNode] = true; } } } } public int[] getDistances() { return distances; } }
$javac JohnsonsAlgorithm .java $java JohnsonsAlgorithm Enter the number of vertices 4 Enter the Weighted Matrix for the graph 0 0 3 0 2 0 0 0 0 7 0 1 6 0 0 0 All pair shortest path is 1 2 3 4 1 0 10 3 4 2 2 0 5 6 3 7 7 0 1 4 6 16 9 0
Related posts:
Java Program to Implement Caesar Cypher
How to Implement Caching using Adonis.js 5
Java Program to Find Median of Elements where Elements are Stored in 2 Different Arrays
Daemon Threads in Java
New in Spring Security OAuth2 – Verify Claims
Interface trong Java 8 – Default method và Static method
Java – Write to File
Java Program to Implement Uniform-Cost Search
Apache Tiles Integration with Spring MVC
Java Scanner hasNext() vs. hasNextLine()
Assertions in JUnit 4 and JUnit 5
Java Program to Implement Heap’s Algorithm for Permutation of N Numbers
Java Program to Implement Gale Shapley Algorithm
Java Program to Implement Fibonacci Heap
Guide to the Volatile Keyword in Java
Một số nguyên tắc, định luật trong lập trình
Java Program to Implement Floyd Cycle Algorithm
Introduction to Thread Pools in Java
Injecting Prototype Beans into a Singleton Instance in Spring
Java Program to Implement LinkedHashSet API
Hướng dẫn Java Design Pattern – DAO
Apache Commons Collections OrderedMap
Generating Random Dates in Java
Logout in an OAuth Secured Application
Implementing a Binary Tree in Java
Guide to PriorityBlockingQueue in Java
Guide to DelayQueue
Vòng lặp for, while, do-while trong Java
Java Program to Implement Knight’s Tour Problem
Why String is Immutable in Java?
Java Program to Use the Bellman-Ford Algorithm to Find the Shortest Path
How to Set TLS Version in Apache HttpClient