This Java program is to Implement Johnson’s algorithm. Johnson’s algorithm is a way to find the shortest paths between all pairs of vertices in a sparse, edge weighted, directed graph. It allows some of the edge weights to be negative numbers, but no negative-weight cycles may exist. It works by using the Bellman–Ford algorithm to compute a transformation of the input graph that removes all negative weights, allowing Dijkstra’s algorithm to be used on the transformed graph.
Here is the source code of the Java program to implement Johnson algorithm. The Java program is successfully compiled and run on a Linux system. The program output is also shown below.
import java.util.InputMismatchException; import java.util.Scanner; public class JohnsonsAlgorithm { private int SOURCE_NODE; private int numberOfNodes; private int augmentedMatrix[][]; private int potential[]; private BellmanFord bellmanFord; private DijkstraShortesPath dijsktraShortesPath; private int[][] allPairShortestPath; public static final int MAX_VALUE = 999; public JohnsonsAlgorithm(int numberOfNodes) { this.numberOfNodes = numberOfNodes; augmentedMatrix = new int[numberOfNodes + 2][numberOfNodes + 2]; SOURCE_NODE = numberOfNodes + 1; potential = new int[numberOfNodes + 2]; bellmanFord = new BellmanFord(numberOfNodes + 1); dijsktraShortesPath = new DijkstraShortesPath(numberOfNodes); allPairShortestPath = new int[numberOfNodes + 1][numberOfNodes + 1]; } public void johnsonsAlgorithms(int adjacencyMatrix[][]) { computeAugmentedGraph(adjacencyMatrix); bellmanFord.BellmanFordEvaluation(SOURCE_NODE, augmentedMatrix); potential = bellmanFord.getDistances(); int reweightedGraph[][] = reweightGraph(adjacencyMatrix); for (int i = 1; i <= numberOfNodes; i++) { for (int j = 1; j <= numberOfNodes; j++) { System.out.print(reweightedGraph[i][j] + "\t"); } System.out.println(); } for (int source = 1; source <= numberOfNodes; source++) { dijsktraShortesPath.dijkstraShortestPath(source, reweightedGraph); int[] result = dijsktraShortesPath.getDistances(); for (int destination = 1; destination <= numberOfNodes; destination++) { allPairShortestPath[destination] = result[destination] + potential[destination] - potential; } } System.out.println(); for (int i = 1; i<= numberOfNodes; i++) { System.out.print("\t"+i); } System.out.println(); for (int source = 1; source <= numberOfNodes; source++) { System.out.print( source +"\t" ); for (int destination = 1; destination <= numberOfNodes; destination++) { System.out.print(allPairShortestPath[destination]+ "\t"); } System.out.println(); } } private void computeAugmentedGraph(int adjacencyMatrix[][]) { for (int source = 1; source <= numberOfNodes; source++) { for (int destination = 1; destination <= numberOfNodes; destination++) { augmentedMatrix[destination] = adjacencyMatrix[destination]; } } for (int destination = 1; destination <= numberOfNodes; destination++) { augmentedMatrix[SOURCE_NODE][destination] = 0; } } private int[][] reweightGraph(int adjacencyMatrix[][]) { int[][] result = new int[numberOfNodes + 1][numberOfNodes + 1]; for (int source = 1; source <= numberOfNodes; source++) { for (int destination = 1; destination <= numberOfNodes; destination++) { result[destination] = adjacencyMatrix[destination] + potential - potential[destination]; } } return result; } public static void main(String... arg) { int adjacency_matrix[][]; int number_of_vertices; Scanner scan = new Scanner(System.in); try { System.out.println("Enter the number of vertices"); number_of_vertices = scan.nextInt(); adjacency_matrix = new int[number_of_vertices + 1][number_of_vertices + 1]; System.out.println("Enter the Weighted Matrix for the graph"); for (int i = 1; i <= number_of_vertices; i++) { for (int j = 1; j <= number_of_vertices; j++) { adjacency_matrix[i][j] = scan.nextInt(); if (i == j) { adjacency_matrix[i][j] = 0; continue; } if (adjacency_matrix[i][j] == 0) { adjacency_matrix[i][j] = MAX_VALUE; } } } JohnsonsAlgorithm johnsonsAlgorithm = new JohnsonsAlgorithm(number_of_vertices); johnsonsAlgorithm.johnsonsAlgorithms(adjacency_matrix); } catch (InputMismatchException inputMismatch) { System.out.println("Wrong Input Format"); } scan.close(); } } class BellmanFord { private int distances[]; private int numberofvertices; public static final int MAX_VALUE = 999; public BellmanFord(int numberofvertices) { this.numberofvertices = numberofvertices; distances = new int[numberofvertices + 1]; } public void BellmanFordEvaluation(int source, int adjacencymatrix[][]) { for (int node = 1; node <= numberofvertices; node++) { distances[node] = MAX_VALUE; } distances = 0; for (int node = 1; node <= numberofvertices - 1; node++) { for (int sourcenode = 1; sourcenode <= numberofvertices; sourcenode++) { for (int destinationnode = 1; destinationnode <= numberofvertices; destinationnode++) { if (adjacencymatrix[sourcenode][destinationnode] != MAX_VALUE) { if (distances[destinationnode] > distances[sourcenode] + adjacencymatrix[sourcenode][destinationnode]) { distances[destinationnode] = distances[sourcenode] + adjacencymatrix[sourcenode][destinationnode]; } } } } } for (int sourcenode = 1; sourcenode <= numberofvertices; sourcenode++) { for (int destinationnode = 1; destinationnode <= numberofvertices; destinationnode++) { if (adjacencymatrix[sourcenode][destinationnode] != MAX_VALUE) { if (distances[destinationnode] > distances[sourcenode] + adjacencymatrix[sourcenode][destinationnode]) System.out.println("The Graph contains negative egde cycle"); } } } } public int[] getDistances() { return distances; } } class DijkstraShortesPath { private boolean settled[]; private boolean unsettled[]; private int distances[]; private int adjacencymatrix[][]; private int numberofvertices; public static final int MAX_VALUE = 999; public DijkstraShortesPath(int numberofvertices) { this.numberofvertices = numberofvertices; } public void dijkstraShortestPath(int source, int adjacencymatrix[][]) { this.settled = new boolean[numberofvertices + 1]; this.unsettled = new boolean[numberofvertices + 1]; this.distances = new int[numberofvertices + 1]; this.adjacencymatrix = new int[numberofvertices + 1][numberofvertices + 1]; int evaluationnode; for (int vertex = 1; vertex <= numberofvertices; vertex++) { distances[vertex] = MAX_VALUE; } for (int sourcevertex = 1; sourcevertex <= numberofvertices; sourcevertex++) { for (int destinationvertex = 1; destinationvertex <= numberofvertices; destinationvertex++) { this.adjacencymatrix[sourcevertex][destinationvertex] = adjacencymatrix[sourcevertex][destinationvertex]; } } unsettled = true; distances = 0; while (getUnsettledCount(unsettled) != 0) { evaluationnode = getNodeWithMinimumDistanceFromUnsettled(unsettled); unsettled[evaluationnode] = false; settled[evaluationnode] = true; evaluateNeighbours(evaluationnode); } } public int getUnsettledCount(boolean unsettled[]) { int count = 0; for (int vertex = 1; vertex <= numberofvertices; vertex++) { if (unsettled[vertex] == true) { count++; } } return count; } public int getNodeWithMinimumDistanceFromUnsettled(boolean unsettled[]) { int min = MAX_VALUE; int node = 0; for (int vertex = 1; vertex <= numberofvertices; vertex++) { if (unsettled[vertex] == true && distances[vertex] < min) { node = vertex; min = distances[vertex]; } } return node; } public void evaluateNeighbours(int evaluationNode) { int edgeDistance = -1; int newDistance = -1; for (int destinationNode = 1; destinationNode <= numberofvertices; destinationNode++) { if (settled[destinationNode] == false) { if (adjacencymatrix[evaluationNode][destinationNode] != MAX_VALUE) { edgeDistance = adjacencymatrix[evaluationNode][destinationNode]; newDistance = distances[evaluationNode] + edgeDistance; if (newDistance < distances[destinationNode]) { distances[destinationNode] = newDistance; } unsettled[destinationNode] = true; } } } } public int[] getDistances() { return distances; } }
$javac JohnsonsAlgorithm .java $java JohnsonsAlgorithm Enter the number of vertices 4 Enter the Weighted Matrix for the graph 0 0 3 0 2 0 0 0 0 7 0 1 6 0 0 0 All pair shortest path is 1 2 3 4 1 0 10 3 4 2 2 0 5 6 3 7 7 0 1 4 6 16 9 0
Related posts:
XML-Based Injection in Spring
Add Multiple Items to an Java ArrayList
Java Program to Perform Partial Key Search in a K-D Tree
Các chương trình minh họa sử dụng Cấu trúc điều khiển trong Java
Java 8 Stream API Analogies in Kotlin
Java program to Implement Tree Set
How to Read HTTP Headers in Spring REST Controllers
Java Program to Check whether Undirected Graph is Connected using BFS
Immutable ArrayList in Java
Assert an Exception is Thrown in JUnit 4 and 5
Check If Two Lists are Equal in Java
How to Change the Default Port in Spring Boot
So sánh Array và ArrayList trong Java
Spring Boot - Tomcat Deployment
A Quick Guide to Using Keycloak with Spring Boot
Java Program to Find the Peak Element of an Array O(n) time (Naive Method)
Java Program to Implement Suffix Array
Java IO vs NIO
Java Program to Implement Hash Tables Chaining with Binary Trees
Java InputStream to String
Anonymous Classes in Java
Java Program to Implement Sparse Array
Rest Web service: Filter và Interceptor với Jersey 2.x (P1)
Convert Character Array to String in Java
Semaphore trong Java
Kiểu dữ liệu Ngày Giờ (Date Time) trong java
Server-Sent Events in Spring
Java Program to Implement Min Heap
Spring Boot - Actuator
Java – File to Reader
Phân biệt JVM, JRE, JDK
Java Program to Check if a Directed Graph is a Tree or Not Using DFS