Java Program to Implement Stack using Linked List

This is a Java Program to implement a stack using linked list. Stack is an area of memory that holds all local variables and parameters used by any function, and remembers the order in which functions are called so that function returns occur correctly. Each time a function is called, its local variables and parameters are “pushed onto” the stack. When the function returns, these locals and parameters are “popped”. Because of this, the size of a program’s stack fluctuates constantly as the program is running, but it has some maximum size. Stack is a Last In First Out (LIFO) abstract data type and linear data structure. Linked list is a data structure consisting of a group of nodes which together represent a sequence. Here we need to apply the application of linked list to perform basic operations of stack.

Here is the source code of the Java program to implement stack using linked list. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.

/*
 * Java Program to Implement Stack using Linked List
 */
 
import java.util.*;
 
/*  Class Node  */
class Node
{
    protected int data;
    protected Node link;
 
    /*  Constructor  */
    public Node()
    {
        link = null;
        data = 0;
    }    
    /*  Constructor  */
    public Node(int d,Node n)
    {
        data = d;
        link = n;
    }    
    /*  Function to set link to next Node  */
    public void setLink(Node n)
    {
        link = n;
    }    
    /*  Function to set data to current Node  */
    public void setData(int d)
    {
        data = d;
    }    
    /*  Function to get link to next node  */
    public Node getLink()
    {
        return link;
    }    
    /*  Function to get data from current Node  */
    public int getData()
    {
        return data;
    }
}
 
/*  Class linkedStack  */
class linkedStack
{
    protected Node top ;
    protected int size ;
 
    /*  Constructor  */
    public linkedStack()
    {
        top = null;
        size = 0;
    }    
    /*  Function to check if stack is empty */
    public boolean isEmpty()
    {
        return top == null;
    }    
    /*  Function to get the size of the stack */
    public int getSize()
    {
        return size;
    }    
    /*  Function to push an element to the stack */
    public void push(int data)
    {
        Node nptr = new Node (data, null);
        if (top == null)
            top = nptr;
        else
        {
            nptr.setLink(top);
            top = nptr;
        }
        size++ ;
    }    
    /*  Function to pop an element from the stack */
    public int pop()
    {
        if (isEmpty() )
            throw new NoSuchElementException("Underflow Exception") ;
        Node ptr = top;
        top = ptr.getLink();
        size-- ;
        return ptr.getData();
    }    
    /*  Function to check the top element of the stack */
    public int peek()
    {
        if (isEmpty() )
            throw new NoSuchElementException("Underflow Exception") ;
        return top.getData();
    }    
    /*  Function to display the status of the stack */
    public void display()
    {
        System.out.print("\nStack = ");
        if (size == 0) 
        {
            System.out.print("Empty\n");
            return ;
        }
        Node ptr = top;
        while (ptr != null)
        {
            System.out.print(ptr.getData()+" ");
            ptr = ptr.getLink();
        }
        System.out.println();        
    }
}
 
/* Class LinkedStackImplement */
public class LinkedStackImplement
{    
    public static void main(String[] args)
    {
        Scanner scan = new Scanner(System.in);   
        /* Creating object of class linkedStack */   
        linkedStack ls = new linkedStack();          
        /* Perform Stack Operations */  
        System.out.println("Linked Stack Test\n");  
        char ch;     
        do 
        {
            System.out.println("\nLinked Stack Operations");
            System.out.println("1. push");
            System.out.println("2. pop");
            System.out.println("3. peek");
            System.out.println("4. check empty");
            System.out.println("5. size");            
            int choice = scan.nextInt();
            switch (choice) 
            {
            case 1 :
                System.out.println("Enter integer element to push");
                ls.push( scan.nextInt() ); 
                break;                         
            case 2 : 
                try
                {
                    System.out.println("Popped Element = "+ ls.pop());
                }
                catch (Exception e)
                {
                    System.out.println("Error : " + e.getMessage());
                }    
                break;                         
            case 3 : 
                try
                {
                    System.out.println("Peek Element = "+ ls.peek());
                }
                catch (Exception e)
                {
                    System.out.println("Error : " + e.getMessage());
                }
                break;                         
            case 4 : 
                System.out.println("Empty status = "+ ls.isEmpty());
                break;                
            case 5 : 
                System.out.println("Size = "+ ls.getSize()); 
                break;                
            case 6 : 
                System.out.println("Stack = "); 
                ls.display();
                break;                        
            default : 
                System.out.println("Wrong Entry \n ");
                break;
            }           
            /* display stack */    
            ls.display();            
            System.out.println("\nDo you want to continue (Type y or n) \n");
            ch = scan.next().charAt(0);       
 
        } while (ch == 'Y'|| ch == 'y');                 
    }
}
Linked Stack Test
 
 
Linked Stack Operations
1. push
2. pop
3. peek
4. check empty
5. size
1
Enter integer element to push
5
 
Stack = 5
 
Do you want to continue (Type y or n)
 
y
 
Linked Stack Operations
1. push
2. pop
3. peek
4. check empty
5. size
1
Enter integer element to push
33
 
Stack = 33 5
 
Do you want to continue (Type y or n)
 
y
 
Linked Stack Operations
1. push
2. pop
3. peek
4. check empty
5. size
1
Enter integer element to push
24
 
Stack = 24 33 5
 
Do you want to continue (Type y or n)
 
y
 
Linked Stack Operations
1. push
2. pop
3. peek
4. check empty
5. size
1
Enter integer element to push
87
 
Stack = 87 24 33 5
 
Do you want to continue (Type y or n)
 
y
 
Linked Stack Operations
1. push
2. pop
3. peek
4. check empty
5. size
1
Enter integer element to push
99
 
Stack = 99 87 24 33 5
 
Do you want to continue (Type y or n)
 
y
 
Linked Stack Operations
1. push
2. pop
3. peek
4. check empty
5. size
1
Enter integer element to push
1
 
Stack = 1 99 87 24 33 5
 
Do you want to continue (Type y or n)
 
y
 
Linked Stack Operations
1. push
2. pop
3. peek
4. check empty
5. size
5
Size = 6
 
Stack = 1 99 87 24 33 5
 
Do you want to continue (Type y or n)
 
y
 
Linked Stack Operations
1. push
2. pop
3. peek
4. check empty
5. size
3
Peek Element = 1
 
Stack = 1 99 87 24 33 5
 
Do you want to continue (Type y or n)
 
y
 
Linked Stack Operations
1. push
2. pop
3. peek
4. check empty
5. size
2
Popped Element = 1
 
Stack = 99 87 24 33 5
 
Do you want to continue (Type y or n)
 
y
 
Linked Stack Operations
1. push
2. pop
3. peek
4. check empty
5. size
2
Popped Element = 99
 
Stack = 87 24 33 5
 
Do you want to continue (Type y or n)
 
y
 
Linked Stack Operations
1. push
2. pop
3. peek
4. check empty
5. size
2
Popped Element = 87
 
Stack = 24 33 5
 
Do you want to continue (Type y or n)
 
y
 
Linked Stack Operations
1. push
2. pop
3. peek
4. check empty
5. size
5
Size = 3
 
Stack = 24 33 5
 
Do you want to continue (Type y or n)
 
y
 
Linked Stack Operations
1. push
2. pop
3. peek
4. check empty
5. size
2
Popped Element = 24
 
Stack = 33 5
 
Do you want to continue (Type y or n)
 
y
 
Linked Stack Operations
1. push
2. pop
3. peek
4. check empty
5. size
3
Peek Element = 33
 
Stack = 33 5
 
Do you want to continue (Type y or n)
 
y
 
Linked Stack Operations
1. push
2. pop
3. peek
4. check empty
5. size
2
Popped Element = 33
 
Stack = 5
 
Do you want to continue (Type y or n)
 
y
 
Linked Stack Operations
1. push
2. pop
3. peek
4. check empty
5. size
2
Popped Element = 5
 
Stack = Empty
 
Do you want to continue (Type y or n)
 
y
 
Linked Stack Operations
1. push
2. pop
3. peek
4. check empty
5. size
2
Error : Underflow Exception
 
Stack = Empty
 
Do you want to continue (Type y or n)
 
y
 
Linked Stack Operations
1. push
2. pop
3. peek
4. check empty
5. size
3
Error : Underflow Exception
 
Stack = Empty
 
Do you want to continue (Type y or n)
 
y
 
Linked Stack Operations
1. push
2. pop
3. peek
4. check empty
5. size
4
Empty status = true
 
Stack = Empty
 
Do you want to continue (Type y or n)
 
n

Related posts:

Java Program to Check Multiplicability of Two Matrices
Java Program to Check Whether a Weak Link i.e. Articulation Vertex Exists in a Graph
How to Store Duplicate Keys in a Map in Java?
Lớp lồng nhau trong java (Java inner class)
Serialize Only Fields that meet a Custom Criteria with Jackson
Java Program to Implement Weight Balanced Tree
Spring @RequestMapping New Shortcut Annotations
Concurrent Test Execution in Spring 5
The Spring @Controller and @RestController Annotations
Java Program to Check if a Matrix is Invertible
Most commonly used String methods in Java
A Guide to Spring Boot Admin
Java Program to Implement Hamiltonian Cycle Algorithm
Abstract class và Interface trong Java
Java Program to Implement Hash Tables Chaining with List Heads
Java Program to Describe the Representation of Graph using Adjacency List
Functional Interfaces in Java 8
Java Program to Implement Hash Tables Chaining with Binary Trees
Java Program to Implement TreeSet API
Hướng dẫn Java Design Pattern – Strategy
Comparing getPath(), getAbsolutePath(), and getCanonicalPath() in Java
SOAP Web service: Authentication trong JAX-WS
Java Program to Implement Hash Tables
Java Program to Implement Heap Sort Using Library Functions
Java Program to Generate Random Partition out of a Given Set of Numbers or Characters
Spring Boot with Multiple SQL Import Files
Quick Guide on Loading Initial Data with Spring Boot
Java Program to Check whether Undirected Graph is Connected using BFS
Java Program to Check if a Directed Graph is a Tree or Not Using DFS
Display Auto-Configuration Report in Spring Boot
Guide to the Fork/Join Framework in Java
Introduction to Using FreeMarker in Spring MVC