Java Program to Perform Insertion in a 2 Dimension K-D Tree

This is a Java Program to implement 2D KD Tree and insert the input set and print the various traversals. In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of binary space partitioning trees.

Here is the source code of the Java Program to Perform Insertion in a 2 Dimension K-D Tree. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.

//This is a java program to insert an element in a 2D KD Tree
import java.io.IOException;
import java.util.Scanner;
 
class KD2DNode
{
    int axis;
    double[] x;
    int id;
    boolean checked;
    boolean orientation;
 
    KD2DNode Parent;
    KD2DNode Left;
    KD2DNode Right;
 
    public KD2DNode(double[] x0, int axis0)
    {
        x = new double[2];
        axis = axis0;
        for (int k = 0; k < 2; k++)
            x[k] = x0[k];
 
        Left = Right = Parent = null;
        checked = false;
        id = 0;
    }
 
    public KD2DNode FindParent(double[] x0)
    {
        KD2DNode parent = null;
        KD2DNode next = this;
        int split;
        while (next != null)
        {
            split = next.axis;
            parent = next;
            if (x0[split] > next.x[split])
                next = next.Right;
            else
                next = next.Left;
        }
        return parent;
    }
 
    public KD2DNode Insert(double[] p)
    {
        x = new double[2];
        KD2DNode parent = FindParent(p);
        if (equal(p, parent.x, 2) == true)
            return null;
 
        KD2DNode newNode = new KD2DNode(p,
                parent.axis + 1 < 2 ? parent.axis + 1 : 0);
        newNode.Parent = parent;
 
        if (p[parent.axis] > parent.x[parent.axis])
        {
            parent.Right = newNode;
            newNode.orientation = true; //
        } else
        {
            parent.Left = newNode;
            newNode.orientation = false; //
        }
 
        return newNode;
    }
 
    boolean equal(double[] x1, double[] x2, int dim)
    {
        for (int k = 0; k < dim; k++)
        {
            if (x1[k] != x2[k])
                return false;
        }
 
        return true;
    }
 
    double distance2(double[] x1, double[] x2, int dim)
    {
        double S = 0;
        for (int k = 0; k < dim; k++)
            S += (x1[k] - x2[k]) * (x1[k] - x2[k]);
        return S;
    }
}
 
class KD2DTree
{
    KD2DNode Root;
 
    int TimeStart, TimeFinish;
    int CounterFreq;
 
    double d_min;
    KD2DNode nearest_neighbour;
 
    int KD_id;
 
    int nList;
 
    KD2DNode CheckedNodes[];
    int checked_nodes;
    KD2DNode List[];
 
    double x_min[], x_max[];
    boolean max_boundary[], min_boundary[];
    int n_boundary;
 
    public KD2DTree(int i)
    {
        Root = null;
        KD_id = 1;
        nList = 0;
        List = new KD2DNode[i];
        CheckedNodes = new KD2DNode[i];
        max_boundary = new boolean[2];
        min_boundary = new boolean[2];
        x_min = new double[2];
        x_max = new double[2];
    }
 
    public boolean add(double[] x)
    {
        if (nList >= 2000000 - 1)
            return false; // can't add more points
 
        if (Root == null)
        {
            Root = new KD2DNode(x, 0);
            Root.id = KD_id++;
            List[nList++] = Root;
        } else
        {
            KD2DNode pNode;
            if ((pNode = Root.Insert(x)) != null)
            {
                pNode.id = KD_id++;
                List[nList++] = pNode;
            }
        }
 
        return true;
    }
 
    public KD2DNode find_nearest(double[] x)
    {
        if (Root == null)
            return null;
 
        checked_nodes = 0;
        KD2DNode parent = Root.FindParent(x);
        nearest_neighbour = parent;
        d_min = Root.distance2(x, parent.x, 2);
        ;
 
        if (parent.equal(x, parent.x, 2) == true)
            return nearest_neighbour;
 
        search_parent(parent, x);
        uncheck();
 
        return nearest_neighbour;
    }
 
    public void check_subtree(KD2DNode node, double[] x)
    {
        if ((node == null) || node.checked)
            return;
 
        CheckedNodes[checked_nodes++] = node;
        node.checked = true;
        set_bounding_cube(node, x);
 
        int dim = node.axis;
        double d = node.x[dim] - x[dim];
 
        if (d * d > d_min)
        {
            if (node.x[dim] > x[dim])
                check_subtree(node.Left, x);
            else
                check_subtree(node.Right, x);
        } else
        {
            check_subtree(node.Left, x);
            check_subtree(node.Right, x);
        }
    }
 
    public void set_bounding_cube(KD2DNode node, double[] x)
    {
        if (node == null)
            return;
        int d = 0;
        double dx;
        for (int k = 0; k < 2; k++)
        {
            dx = node.x[k] - x[k];
            if (dx > 0)
            {
                dx *= dx;
                if (!max_boundary[k])
                {
                    if (dx > x_max[k])
                        x_max[k] = dx;
                    if (x_max[k] > d_min)
                    {
                        max_boundary[k] = true;
                        n_boundary++;
                    }
                }
            } else
            {
                dx *= dx;
                if (!min_boundary[k])
                {
                    if (dx > x_min[k])
                        x_min[k] = dx;
                    if (x_min[k] > d_min)
                    {
                        min_boundary[k] = true;
                        n_boundary++;
                    }
                }
            }
            d += dx;
            if (d > d_min)
                return;
 
        }
 
        if (d < d_min)
        {
            d_min = d;
            nearest_neighbour = node;
        }
    }
 
    public KD2DNode search_parent(KD2DNode parent, double[] x)
    {
        for (int k = 0; k < 2; k++)
        {
            x_min[k] = x_max[k] = 0;
            max_boundary[k] = min_boundary[k] = false; //
        }
        n_boundary = 0;
 
        KD2DNode search_root = parent;
        while (parent != null && (n_boundary != 2 * 2))
        {
            check_subtree(parent, x);
            search_root = parent;
            parent = parent.Parent;
        }
 
        return search_root;
    }
 
    public void uncheck()
    {
        for (int n = 0; n < checked_nodes; n++)
            CheckedNodes[n].checked = false;
    }
 
    public void inorder()
    {
        inorder(Root);
    }
 
    private void inorder(KD2DNode root)
    {
        if (root != null)
        {
            inorder(root.Left);
            System.out.print("(" + root.x[0] + ", " + root.x[1] + ")  ");
            inorder(root.Right);
        }
    }
 
    public void preorder()
    {
        preorder(Root);
    }
 
    private void preorder(KD2DNode root)
    {
        if (root != null)
        {
            System.out.print("(" + root.x[0] + ", " + root.x[1] + ")  ");
            inorder(root.Left);
            inorder(root.Right);
        }
    }
 
    public void postorder()
    {
        postorder(Root);
    }
 
    private void postorder(KD2DNode root)
    {
        if (root != null)
        {
            inorder(root.Left);
            inorder(root.Right);
            System.out.print("(" + root.x[0] + ", " + root.x[1] + ")  ");
        }
    }
}
 
public class KDTree_TwoD_Data
{
    public static void main(String args[]) throws IOException
    {
        int numpoints = 5;
        Scanner sc = new Scanner(System.in);
        KD2DTree kdt = new KD2DTree(numpoints);
        double x[] = new double[2];
        System.out.println("Enter the first 5 data set : <x> <y>");
        for (int i = 0; i < numpoints; i++)
        {
            x[0] = sc.nextDouble();
            x[1] = sc.nextDouble();
            kdt.add(x);
        }
 
        System.out.println("Inorder of 2D Kd tree: ");
        kdt.inorder();
 
        System.out.println("\nPreorder of 2D Kd tree: ");
        kdt.preorder();
 
        System.out.println("\nPostorder of 2D Kd tree: ");
        kdt.postorder();
        sc.close();
    }
}

Output:

$ javac KD2D_Insertion.java
$ java KD2D_Insertion
 
Enter the first 10 data set : <x> <y>
0 0
2 3
3 4
4 5
5 6
Inorder of 2D Kd tree: 
(0.0, 0.0)  (2.0, 3.0)  (3.0, 4.0)  (4.0, 5.0)  (5.0, 6.0)  
Preorder of 2D Kd tree: 
(0.0, 0.0)  (2.0, 3.0)  (3.0, 4.0)  (4.0, 5.0)  (5.0, 6.0)  
Postorder of 2D Kd tree: 
(2.0, 3.0)  (3.0, 4.0)  (4.0, 5.0)  (5.0, 6.0)  (0.0, 0.0)

Related posts:

Java – Write to File
Java Program to Implement HashSet API
A Guide to Queries in Spring Data MongoDB
Java Program to Perform Insertion in a BST
Hướng dẫn Java Design Pattern – Bridge
Java Program to Implement Self Balancing Binary Search Tree
Java Program to Generate Random Numbers Using Middle Square Method
Java Program to Generate Random Partition out of a Given Set of Numbers or Characters
Tips for dealing with HTTP-related problems
Java Program to Implement Borwein Algorithm
Reading an HTTP Response Body as a String in Java
Java Program to Implement Regular Falsi Algorithm
Java Program to Perform the Sorting Using Counting Sort
Java Program to Evaluate an Expression using Stacks
How to Set TLS Version in Apache HttpClient
Java Program to Implement an Algorithm to Find the Global min Cut in a Graph
Serverless Functions with Spring Cloud Function
Introduction to Spring Cloud Stream
Java Program to Find Number of Articulation points in a Graph
Show Hibernate/JPA SQL Statements from Spring Boot
Java Program to Implement Suffix Array
Spring Boot - Exception Handling
So sánh ArrayList và LinkedList trong Java
Java Program to Perform Postorder Non-Recursive Traversal of a Given Binary Tree
Java Program to Implement Euclid GCD Algorithm
Serialize Only Fields that meet a Custom Criteria with Jackson
Java Program to Implement Heap Sort Using Library Functions
Java Program to Implement Weight Balanced Tree
Constructor Injection in Spring with Lombok
Hướng dẫn tạo và sử dụng ThreadPool trong Java
Java Program to Implement Pollard Rho Algorithm
Giới thiệu Google Guice – Aspect Oriented Programming (AOP)