Wrong Answer on Test 233 (Hard Version)

This is the harder version of the problem. In this version, $1 \le n \le 2\cdot10^5$. You can hack this problem if you locked it. But you can hack the previous problem only if you locked both problems.

The problem is to finish $n$ one-choice-questions. Each of the questions contains $k$ options, and only one of them is correct. The answer to the $i$-th question is $h_{i}$, and if your answer of the question $i$ is $h_{i}$, you earn $1$ point, otherwise, you earn $0$ points for this question. The values $h_1, h_2, \dots, h_n$ are known to you in this problem.

However, you have a mistake in your program. It moves the answer clockwise! Consider all the $n$ answers are written in a circle. Due to the mistake in your program, they are shifted by one cyclically.

Formally, the mistake moves the answer for the question $i$ to the question $i \bmod n + 1$. So it moves the answer for the question $1$ to question $2$, the answer for the question $2$ to the question $3$, …, the answer for the question $n$ to the question $1$.

We call all the $n$ answers together an answer suit. There are $k^n$ possible answer suits in total.

You’re wondering, how many answer suits satisfy the following condition: after moving clockwise by $1$, the total number of points of the new answer suit is strictly larger than the number of points of the old one. You need to find the answer modulo $998\,244\,353$.

For example, if $n = 5$, and your answer suit is $a=[1,2,3,4,5]$, it will submitted as $a’=[5,1,2,3,4]$ because of a mistake. If the correct answer suit is $h=[5,2,2,3,4]$, the answer suit $a$ earns $1$ point and the answer suite $a’$ earns $4$ points. Since $4 > 1$, the answer suit $a=[1,2,3,4,5]$ should be counted.Input

The first line contains two integers $n$, $k$ ($1 \le n \le 2\cdot10^5$, $1 \le k \le 10^9$) — the number of questions and the number of possible answers to each question.

The following line contains $n$ integers $h_1, h_2, \dots, h_n$, ($1 \le h_{i} \le k)$ — answers to the questions.Output

Output one integer: the number of answers suits satisfying the given condition, modulo $998\,244\,353$.Examplesinput

3 3
1 3 1

output

9

input

5 5
1 1 4 2 2

output

1000

input

6 2
1 1 2 2 1 1

output

16

Note

For the first example, valid answer suits are $[2,1,1], [2,1,2], [2,1,3], [3,1,1], [3,1,2], [3,1,3], [3,2,1], [3,2,2], [3,2,3]$.

Solution:

#include <bits/stdc++.h>

using namespace std;

template <typename T>
T inverse(T a, T m) {
T u = 0, v = 1;
while (a != 0) {
T t = m / a;
m -= t * a; swap(a, m);
u -= t * v; swap(u, v);
}
assert(m == 1);
return u;
}

template <typename T>
class Modular {
public:
using Type = typename decay<decltype(T::value)>::type;

constexpr Modular() : value() {}
template <typename U>
Modular(const U& x) {
value = normalize(x);
}

template <typename U>
static Type normalize(const U& x) {
Type v;
if (-mod() <= x && x < mod()) v = static_cast<Type>(x);
else v = static_cast<Type>(x % mod());
if (v < 0) v += mod();
    return v;
  }

  const Type& operator()() const { return value; }
  template <typename U>
explicit operator U() const { return static_cast<U>(value); }
constexpr static Type mod() { return T::value; }

Modular& operator+=(const Modular& other) { if ((value += other.value) >= mod()) value -= mod(); return *this; }
Modular& operator-=(const Modular& other) { if ((value -= other.value) < 0) value += mod(); return *this; }
  template <typename U> Modular& operator+=(const U& other) { return *this += Modular(other); }
template <typename U> Modular& operator-=(const U& other) { return *this -= Modular(other); }
Modular& operator++() { return *this += 1; }
Modular& operator--() { return *this -= 1; }
Modular operator++(int) { Modular result(*this); *this += 1; return result; }
Modular operator--(int) { Modular result(*this); *this -= 1; return result; }
Modular operator-() const { return Modular(-value); }

template <typename U = T>
typename enable_if<is_same<typename Modular<U>::Type, int>::value, Modular>::type& operator*=(const Modular& rhs) {
#ifdef _WIN32
uint64_t x = static_cast<int64_t>(value) * static_cast<int64_t>(rhs.value);
uint32_t xh = static_cast<uint32_t>(x >> 32), xl = static_cast<uint32_t>(x), d, m;
asm(
"divl %4; \n\t"
: "=a" (d), "=d" (m)
: "d" (xh), "a" (xl), "r" (mod())
);
value = m;
#else
value = normalize(static_cast<int64_t>(value) * static_cast<int64_t>(rhs.value));
#endif
return *this;
}
template <typename U = T>
typename enable_if<is_same<typename Modular<U>::Type, int64_t>::value, Modular>::type& operator*=(const Modular& rhs) {
int64_t q = static_cast<int64_t>(static_cast<long double>(value) * rhs.value / mod());
value = normalize(value * rhs.value - q * mod());
return *this;
}
template <typename U = T>
typename enable_if<!is_integral<typename Modular<U>::Type>::value, Modular>::type& operator*=(const Modular& rhs) {
value = normalize(value * rhs.value);
return *this;
}

Modular& operator/=(const Modular& other) { return *this *= Modular(inverse(other.value, mod())); }

template <typename U>
friend const Modular<U>& abs(const Modular<U>& v) { return v; }

template <typename U>
friend bool operator==(const Modular<U>& lhs, const Modular<U>& rhs);

template <typename U>
friend bool operator<(const Modular<U>& lhs, const Modular<U>& rhs);

template <typename U>
friend std::istream& operator>>(std::istream& stream, Modular<U>& number);

private:
Type value;
};

template <typename T> bool operator==(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value == rhs.value; }
template <typename T, typename U> bool operator==(const Modular<T>& lhs, U rhs) { return lhs == Modular<T>(rhs); }
template <typename T, typename U> bool operator==(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) == rhs; }

template <typename T> bool operator!=(const Modular<T>& lhs, const Modular<T>& rhs) { return !(lhs == rhs); }
template <typename T, typename U> bool operator!=(const Modular<T>& lhs, U rhs) { return !(lhs == rhs); }
template <typename T, typename U> bool operator!=(U lhs, const Modular<T>& rhs) { return !(lhs == rhs); }

template <typename T> bool operator<(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value < rhs.value; }

template <typename T> Modular<T> operator+(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) += rhs; }
template <typename T, typename U> Modular<T> operator+(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) += rhs; }
template <typename T, typename U> Modular<T> operator+(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) += rhs; }

template <typename T> Modular<T> operator-(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) -= rhs; }
template <typename T, typename U> Modular<T> operator-(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) -= rhs; }
template <typename T, typename U> Modular<T> operator-(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) -= rhs; }

template <typename T> Modular<T> operator*(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T, typename U> Modular<T> operator*(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T, typename U> Modular<T> operator*(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; }

template <typename T> Modular<T> operator/(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; }
template <typename T, typename U> Modular<T> operator/(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) /= rhs; }
template <typename T, typename U> Modular<T> operator/(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; }

template<typename T, typename U>
Modular<T> power(const Modular<T>& a, const U& b) {
assert(b >= 0);
Modular<T> x = a, res = 1;
U p = b;
while (p > 0) {
if (p & 1) res *= x;
x *= x;
p >>= 1;
}
return res;
}

template <typename T>
bool IsZero(const Modular<T>& number) {
return number() == 0;
}

template <typename T>
string to_string(const Modular<T>& number) {
return to_string(number());
}

template <typename T>
std::ostream& operator<<(std::ostream& stream, const Modular<T>& number) {
return stream << number();
}

template <typename T>
std::istream& operator>>(std::istream& stream, Modular<T>& number) {
typename common_type<typename Modular<T>::Type, int64_t>::type x;
stream >> x;
number.value = Modular<T>::normalize(x);
return stream;
}

/*
using ModType = int;

struct VarMod { static ModType value; };
ModType VarMod::value;
ModType& md = VarMod::value;
using Mint = Modular<VarMod>;
*/

constexpr int md = 998244353;
using Mint = Modular<std::integral_constant<decay<decltype(md)>::type, md>>;

int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n, k;
cin >> n >> k;
vector<int> a(n);
for (int i = 0; i < n; i++) {
    cin >> a[i];
}
int cnt = 0;
for (int i = 0; i < n; i++) {
    if (a[i] != a[(i + 1) % n]) {
      ++cnt;
    }
  }
  if (cnt == 0) {
    cout << 0 << '\n';
    return 0;
  }
  vector<Mint> fact(n + 1);
fact[0] = 1;
for (int i = 1; i <= n; i++) {
    fact[i] = fact[i - 1] * i;
  }
  vector<Mint> inv_fact(n + 1);
for (int i = 0; i <= n; i++) {
    inv_fact[i] = 1 / fact[i];
  }
  auto C = [&](int N, int K) {
    if (K < 0 || K > N) {
return Mint(0);
}
return fact[N] * inv_fact[K] * inv_fact[N - K];
};
Mint ans = 0;
for (int s = 1; s <= cnt; s++) {
    Mint cur = C(cnt, s);
    if (s % 2 == 1) {
      cur *= power(Mint(2), s - 1);
    } else {
      cur *= (power(Mint(2), s) - C(s, s / 2)) / 2;
    }
    cur *= power(Mint(k - 2), cnt - s);
    ans += cur;
  }
  ans *= power(Mint(k), n - cnt);
  cout << ans << '\n';
  return 0;
}