This Java program,to Implement Dijkstra’s algorithm using Priority Queue.Dijkstra’s algorithm is a graph search algorithm that solves the single-source shortest path problem for a graph with non-negative edge path costs, producing a shortest path tree.
Here is the source code of the Java program to implement Dijkstra’s algorithm using Priority Queue. The Java program is successfully compiled and run on a Linux system. The program output is also shown below.
import java.util.HashSet;
import java.util.InputMismatchException;
import java.util.PriorityQueue;
import java.util.Scanner;
import java.util.Set;
public class DijkstraPriorityQueue
{
private int distances[];
private Set<Integer> settled;
private PriorityQueue<Node> priorityQueue;
private int number_of_nodes;
private int adjacencyMatrix[][];
public DijkstraPriorityQueue(int number_of_nodes)
{
this.number_of_nodes = number_of_nodes;
distances = new int[number_of_nodes + 1];
settled = new HashSet<Integer>();
priorityQueue = new PriorityQueue<Node>(number_of_nodes,new Node());
adjacencyMatrix = new int[number_of_nodes + 1][number_of_nodes + 1];
}
public void dijkstra_algorithm(int adjacency_matrix[][], int source)
{
int evaluationNode;
for (int i = 1; i <= number_of_nodes; i++)
for (int j = 1; j <= number_of_nodes; j++)
adjacencyMatrix[i][j] = adjacency_matrix[i][j];
for (int i = 1; i <= number_of_nodes; i++)
{
distances[i] = Integer.MAX_VALUE;
}
priorityQueue.add(new Node(source, 0));
distances = 0;
while (!priorityQueue.isEmpty())
{
evaluationNode = getNodeWithMinimumDistanceFromPriorityQueue();
settled.add(evaluationNode);
evaluateNeighbours(evaluationNode);
}
}
private int getNodeWithMinimumDistanceFromPriorityQueue()
{
int node = priorityQueue.remove();
return node;
}
private void evaluateNeighbours(int evaluationNode)
{
int edgeDistance = -1;
int newDistance = -1;
for (int destinationNode = 1; destinationNode <= number_of_nodes; destinationNode++)
{
if (!settled.contains(destinationNode))
{
if (adjacencyMatrix[evaluationNode][destinationNode] != Integer.MAX_VALUE)
{
edgeDistance = adjacencyMatrix[evaluationNode][destinationNode];
newDistance = distances[evaluationNode] + edgeDistance;
if (newDistance < distances[destinationNode])
{
distances[destinationNode] = newDistance;
}
priorityQueue.add(new Node(destinationNode,distances[destinationNode]));
}
}
}
}
public static void main(String... arg)
{
int adjacency_matrix[][];
int number_of_vertices;
int source = 0;
Scanner scan = new Scanner(System.in);
try
{
System.out.println("Enter the number of vertices");
number_of_vertices = scan.nextInt();
adjacency_matrix = new int[number_of_vertices + 1][number_of_vertices + 1];
System.out.println("Enter the Weighted Matrix for the graph");
for (int i = 1; i <= number_of_vertices; i++)
{
for (int j = 1; j <= number_of_vertices; j++)
{
adjacency_matrix[i][j] = scan.nextInt();
if (i == j)
{
adjacency_matrix[i][j] = 0;
continue;
}
if (adjacency_matrix[i][j] == 0)
{
adjacency_matrix[i][j] = Integer.MAX_VALUE;
}
}
}
System.out.println("Enter the source ");
source = scan.nextInt();
DijkstraPriorityQueue dijkstrasPriorityQueue = new DijkstraPriorityQueue(number_of_vertices);
dijkstrasPriorityQueue.dijkstra_algorithm(adjacency_matrix, source);
System.out.println("The Shorted Path to all nodes are ");
for (int i = 1; i <= dijkstrasPriorityQueue.distances.length - 1; i++)
{
System.out.println(source + " to " + i + " is " + dijkstrasPriorityQueue.distances[i]);
}
} catch (InputMismatchException inputMismatch)
{
System.out.println("Wrong Input Format");
}
scan.close();
}
}
class Node implements Comparator<Node>
{
public int node;
public int cost;
public Node()
{
}
public Node(int node, int cost)
{
this.node = node;
this.cost = cost;
}
@Override
public int compare(Node node1, Node node2)
{
if (node1.cost < node2.cost)
return -1;
if (node1.cost > node2.cost)
return 1;
return 0;
}
}
$javac DijkstraPriorityQueue.java $java DijkstraPriorityQueue Enter the number of vertices 5 Enter the Weighted Matrix for the graph 0 9 6 5 3 0 0 0 0 0 0 2 0 4 0 0 0 0 0 0 0 0 0 0 0 Enter the source 1 The Shorted Path to all nodes are 1 to 1 is 0 1 to 2 is 8 1 to 3 is 6 1 to 4 is 5 1 to 5 is 3
Related posts:
Java Program to Implement IdentityHashMap API
Hướng dẫn sử dụng Java Annotation
Request Method Not Supported (405) in Spring
Java Program to Perform Complex Number Multiplication
More Jackson Annotations
Using Spring ResponseEntity to Manipulate the HTTP Response
Spring Boot - Tomcat Port Number
SOAP Web service: Upload và Download file sử dụng MTOM trong JAX-WS
StringBuilder vs StringBuffer in Java
Convert Hex to ASCII in Java
Programmatic Transaction Management in Spring
Làm thế nào tạo instance của một class mà không gọi từ khóa new?
Introduction to Spring MVC HandlerInterceptor
Java Program to Find Location of a Point Placed in Three Dimensions Using K-D Trees
Java Program to Perform Preorder Non-Recursive Traversal of a Given Binary Tree
Tính đóng gói (Encapsulation) trong java
Java Program to Implement the Checksum Method for Small String Messages and Detect
Functional Interfaces in Java 8
Debug a HttpURLConnection problem
How to Remove the Last Character of a String?
Spring Data JPA and Null Parameters
Hướng dẫn Java Design Pattern – Visitor
Join and Split Arrays and Collections in Java
Hướng dẫn Java Design Pattern – Decorator
Spring Boot - Exception Handling
Java Program to Create the Prufer Code for a Tree
Java Program to Implement Insertion Sort
Java Program to Implement Gift Wrapping Algorithm in Two Dimensions
Java Program to Perform Inorder Recursive Traversal of a Given Binary Tree
Spring WebClient vs. RestTemplate
Lập trình đa luồng với Callable và Future trong Java
Java Program to Perform Arithmetic Operations on Numbers of Size