This Java program,implements Best-First Search.Best-first search is a search algorithm which explores a graph by expanding the most promising node chosen according to a specified rule.
Judea Pearl described best-first search as estimating the promise of node n by a “heuristic evaluation function which, in general, may depend on the description of n, the description of the goal, the information gathered by the search up to that point, and most important, on any extra knowledge about the problem domain.
Here is the source code of the Java program to implements Best-First Search. The Java program is successfully compiled and run on a Linux system. The program output is also shown below.
import java.util.Comparator;
import java.util.InputMismatchException;
import java.util.PriorityQueue;
import java.util.Scanner;
public class BestFirstSearch
{
private PriorityQueue<Vertex> priorityQueue;
private int heuristicvalues[];
private int numberOfNodes;
public static final int MAX_VALUE = 999;
public BestFirstSearch(int numberOfNodes)
{
this.numberOfNodes = numberOfNodes;
this.priorityQueue = new PriorityQueue<Vertex>(this.numberOfNodes,
new Vertex());
}
public void bestFirstSearch(int adjacencyMatrix[][], int[] heuristicvalues,int source)
{
int evaluationNode;
int destinationNode;
int visited[] = new int [numberOfNodes + 1];
this.heuristicvalues = heuristicvalues;
priorityQueue.add(new Vertex(source, this.heuristicvalues));
visited = 1;
while (!priorityQueue.isEmpty())
{
evaluationNode = getNodeWithMinimumHeuristicValue();
destinationNode = 1;
System.out.print(evaluationNode + "\t");
while (destinationNode <= numberOfNodes)
{
Vertex vertex = new Vertex(destinationNode,this.heuristicvalues[destinationNode]);
if ((adjacencyMatrix[evaluationNode][destinationNode] != MAX_VALUE
&& evaluationNode != destinationNode)&& visited[destinationNode] == 0)
{
priorityQueue.add(vertex);
visited[destinationNode] = 1;
}
destinationNode++;
}
}
}
private int getNodeWithMinimumHeuristicValue()
{
Vertex vertex = priorityQueue.remove();
return vertex.node;
}
public static void main(String... arg)
{
int adjacency_matrix[][];
int number_of_vertices;
int source = 0;
int heuristicvalues[];
Scanner scan = new Scanner(System.in);
try
{
System.out.println("Enter the number of vertices");
number_of_vertices = scan.nextInt();
adjacency_matrix = new int[number_of_vertices + 1][number_of_vertices + 1];
heuristicvalues = new int[number_of_vertices + 1];
System.out.println("Enter the Weighted Matrix for the graph");
for (int i = 1; i <= number_of_vertices; i++)
{
for (int j = 1; j <= number_of_vertices; j++)
{
adjacency_matrix[i][j] = scan.nextInt();
if (i == j)
{
adjacency_matrix[i][j] = 0;
continue;
}
if (adjacency_matrix[i][j] == 0)
{
adjacency_matrix[i][j] = MAX_VALUE;
}
}
}
for (int i = 1; i <= number_of_vertices; i++)
{
for (int j = 1; j <= number_of_vertices; j++)
{
if (adjacency_matrix[i][j] == 1 && adjacency_matrix[j][i] == 0)
{
adjacency_matrix[j][i] = 1;
}
}
}
System.out.println("Enter the heuristic values of the nodes");
for (int vertex = 1; vertex <= number_of_vertices; vertex++)
{
System.out.print(vertex + ".");
heuristicvalues[vertex] = scan.nextInt();
System.out.println();
}
System.out.println("Enter the source ");
source = scan.nextInt();
System.out.println("The graph is explored as follows");
BestFirstSearch bestFirstSearch = new BestFirstSearch(number_of_vertices);
bestFirstSearch.bestFirstSearch(adjacency_matrix, heuristicvalues,source);
} catch (InputMismatchException inputMismatch)
{
System.out.println("Wrong Input Format");
}
scan.close();
}
}
class Vertex implements Comparator<Vertex>
{
public int heuristicvalue;
public int node;
public Vertex(int node, int heuristicvalue)
{
this.heuristicvalue = heuristicvalue;
this.node = node;
}
public Vertex()
{
}
@Override
public int compare(Vertex vertex1, Vertex vertex2)
{
if (vertex1.heuristicvalue < vertex2.heuristicvalue)
return -1;
if (vertex1.heuristicvalue > vertex2.heuristicvalue)
return 1;
return 0;
}
@Override
public boolean equals(Object obj)
{
if (obj instanceof Vertex)
{
Vertex node = (Vertex) obj;
if (this.node == node.node)
{
return true;
}
}
return false;
}
}
$javac BestFirstSearch.java $java BestFirstSearch Enter the number of vertices 6 Enter the Weighted Matrix for the graph 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 1 1 0 0 0 0 Enter the heuristic values of the nodes 1.2 2.3 3.1 4.4 5.0 6.10 Enter the source 6 The graph is explored as follows 6 1 3 2 5 4
Related posts:
Spring Boot - Apache Kafka
Feign – Tạo ứng dụng Java RESTful Client
Java – Write an InputStream to a File
Enum trong java
Java Program to Implement String Matching Using Vectors
Receive email using IMAP
Lớp Arrarys trong Java (Arrays Utility Class)
Spring Boot - Tomcat Deployment
Java Program to Remove the Edges in a Given Cyclic Graph such that its Linear Extension can be Found
Hướng dẫn Java Design Pattern – Flyweight
DynamoDB in a Spring Boot Application Using Spring Data
Java Program to Emulate N Dice Roller
Spring Boot - Google OAuth2 Sign-In
Lớp LinkedHashMap trong Java
Java Program to Implement Solovay Strassen Primality Test Algorithm
Java Program to Implement Fibonacci Heap
Changing Annotation Parameters At Runtime
Java Program to Find Number of Articulation points in a Graph
Using a List of Values in a JdbcTemplate IN Clause
Java Program to Implement Find all Back Edges in a Graph
Java 8 Predicate Chain
Java Program to Check whether Undirected Graph is Connected using DFS
Immutable ArrayList in Java
Getting Started with Custom Deserialization in Jackson
Guide to Selenium with JUnit / TestNG
Flattening Nested Collections in Java
Java Program to Implement Hash Tables
Java Program to Check whether Directed Graph is Connected using BFS
Java Program to Represent Graph Using Incidence Matrix
A Guide to Java 9 Modularity
Java Program to Find the GCD and LCM of two Numbers
Spring Cloud – Securing Services