This Java program,implements Best-First Search.Best-first search is a search algorithm which explores a graph by expanding the most promising node chosen according to a specified rule.
Judea Pearl described best-first search as estimating the promise of node n by a “heuristic evaluation function which, in general, may depend on the description of n, the description of the goal, the information gathered by the search up to that point, and most important, on any extra knowledge about the problem domain.
Here is the source code of the Java program to implements Best-First Search. The Java program is successfully compiled and run on a Linux system. The program output is also shown below.
import java.util.Comparator; import java.util.InputMismatchException; import java.util.PriorityQueue; import java.util.Scanner; public class BestFirstSearch { private PriorityQueue<Vertex> priorityQueue; private int heuristicvalues[]; private int numberOfNodes; public static final int MAX_VALUE = 999; public BestFirstSearch(int numberOfNodes) { this.numberOfNodes = numberOfNodes; this.priorityQueue = new PriorityQueue<Vertex>(this.numberOfNodes, new Vertex()); } public void bestFirstSearch(int adjacencyMatrix[][], int[] heuristicvalues,int source) { int evaluationNode; int destinationNode; int visited[] = new int [numberOfNodes + 1]; this.heuristicvalues = heuristicvalues; priorityQueue.add(new Vertex(source, this.heuristicvalues)); visited = 1; while (!priorityQueue.isEmpty()) { evaluationNode = getNodeWithMinimumHeuristicValue(); destinationNode = 1; System.out.print(evaluationNode + "\t"); while (destinationNode <= numberOfNodes) { Vertex vertex = new Vertex(destinationNode,this.heuristicvalues[destinationNode]); if ((adjacencyMatrix[evaluationNode][destinationNode] != MAX_VALUE && evaluationNode != destinationNode)&& visited[destinationNode] == 0) { priorityQueue.add(vertex); visited[destinationNode] = 1; } destinationNode++; } } } private int getNodeWithMinimumHeuristicValue() { Vertex vertex = priorityQueue.remove(); return vertex.node; } public static void main(String... arg) { int adjacency_matrix[][]; int number_of_vertices; int source = 0; int heuristicvalues[]; Scanner scan = new Scanner(System.in); try { System.out.println("Enter the number of vertices"); number_of_vertices = scan.nextInt(); adjacency_matrix = new int[number_of_vertices + 1][number_of_vertices + 1]; heuristicvalues = new int[number_of_vertices + 1]; System.out.println("Enter the Weighted Matrix for the graph"); for (int i = 1; i <= number_of_vertices; i++) { for (int j = 1; j <= number_of_vertices; j++) { adjacency_matrix[i][j] = scan.nextInt(); if (i == j) { adjacency_matrix[i][j] = 0; continue; } if (adjacency_matrix[i][j] == 0) { adjacency_matrix[i][j] = MAX_VALUE; } } } for (int i = 1; i <= number_of_vertices; i++) { for (int j = 1; j <= number_of_vertices; j++) { if (adjacency_matrix[i][j] == 1 && adjacency_matrix[j][i] == 0) { adjacency_matrix[j][i] = 1; } } } System.out.println("Enter the heuristic values of the nodes"); for (int vertex = 1; vertex <= number_of_vertices; vertex++) { System.out.print(vertex + "."); heuristicvalues[vertex] = scan.nextInt(); System.out.println(); } System.out.println("Enter the source "); source = scan.nextInt(); System.out.println("The graph is explored as follows"); BestFirstSearch bestFirstSearch = new BestFirstSearch(number_of_vertices); bestFirstSearch.bestFirstSearch(adjacency_matrix, heuristicvalues,source); } catch (InputMismatchException inputMismatch) { System.out.println("Wrong Input Format"); } scan.close(); } } class Vertex implements Comparator<Vertex> { public int heuristicvalue; public int node; public Vertex(int node, int heuristicvalue) { this.heuristicvalue = heuristicvalue; this.node = node; } public Vertex() { } @Override public int compare(Vertex vertex1, Vertex vertex2) { if (vertex1.heuristicvalue < vertex2.heuristicvalue) return -1; if (vertex1.heuristicvalue > vertex2.heuristicvalue) return 1; return 0; } @Override public boolean equals(Object obj) { if (obj instanceof Vertex) { Vertex node = (Vertex) obj; if (this.node == node.node) { return true; } } return false; } }
$javac BestFirstSearch.java $java BestFirstSearch Enter the number of vertices 6 Enter the Weighted Matrix for the graph 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 1 1 0 0 0 0 Enter the heuristic values of the nodes 1.2 2.3 3.1 4.4 5.0 6.10 Enter the source 6 The graph is explored as follows 6 1 3 2 5 4
Related posts:
Comparing Dates in Java
The Registration Process With Spring Security
Hướng dẫn Java Design Pattern – State
Sort a HashMap in Java
Java Program to Check Whether an Undirected Graph Contains a Eulerian Cycle
Mapping Nested Values with Jackson
Partition a List in Java
Spring Boot - Google OAuth2 Sign-In
HttpClient 4 Cookbook
Java Program to Construct an Expression Tree for an Postfix Expression
Java Program to Implement Sparse Matrix
Adding a Newline Character to a String in Java
Overview of Spring Boot Dev Tools
Spring Data – CrudRepository save() Method
How to Get the Last Element of a Stream in Java?
Creating Docker Images with Spring Boot
Java Scanner hasNext() vs. hasNextLine()
Java Program to Implement Interval Tree
Java Program to Implement Traveling Salesman Problem using Nearest neighbour Algorithm
Getting Started with GraphQL and Spring Boot
Java Program to Generate All Subsets of a Given Set in the Lexico Graphic Order
Loại bỏ các phần tử trùng trong một ArrayList như thế nào?
Spring Security 5 – OAuth2 Login
Spring Boot Security Auto-Configuration
Netflix Archaius with Various Database Configurations
Object cloning trong java
Guide to CountDownLatch in Java
How to Replace Many if Statements in Java
Java Program to Implement Network Flow Problem
Check If a File or Directory Exists in Java
Join and Split Arrays and Collections in Java
Working with Tree Model Nodes in Jackson