This is a Java Program to implement 2D KD Tree and insert the input set and print the various traversals. In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of binary space partitioning trees.
Here is the source code of the Java Program to Perform Insertion in a 2 Dimension K-D Tree. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a java program to insert an element in a 2D KD Tree
import java.io.IOException;
import java.util.Scanner;
class KD2DNode
{
int axis;
double[] x;
int id;
boolean checked;
boolean orientation;
KD2DNode Parent;
KD2DNode Left;
KD2DNode Right;
public KD2DNode(double[] x0, int axis0)
{
x = new double[2];
axis = axis0;
for (int k = 0; k < 2; k++)
x[k] = x0[k];
Left = Right = Parent = null;
checked = false;
id = 0;
}
public KD2DNode FindParent(double[] x0)
{
KD2DNode parent = null;
KD2DNode next = this;
int split;
while (next != null)
{
split = next.axis;
parent = next;
if (x0[split] > next.x[split])
next = next.Right;
else
next = next.Left;
}
return parent;
}
public KD2DNode Insert(double[] p)
{
x = new double[2];
KD2DNode parent = FindParent(p);
if (equal(p, parent.x, 2) == true)
return null;
KD2DNode newNode = new KD2DNode(p,
parent.axis + 1 < 2 ? parent.axis + 1 : 0);
newNode.Parent = parent;
if (p[parent.axis] > parent.x[parent.axis])
{
parent.Right = newNode;
newNode.orientation = true; //
} else
{
parent.Left = newNode;
newNode.orientation = false; //
}
return newNode;
}
boolean equal(double[] x1, double[] x2, int dim)
{
for (int k = 0; k < dim; k++)
{
if (x1[k] != x2[k])
return false;
}
return true;
}
double distance2(double[] x1, double[] x2, int dim)
{
double S = 0;
for (int k = 0; k < dim; k++)
S += (x1[k] - x2[k]) * (x1[k] - x2[k]);
return S;
}
}
class KD2DTree
{
KD2DNode Root;
int TimeStart, TimeFinish;
int CounterFreq;
double d_min;
KD2DNode nearest_neighbour;
int KD_id;
int nList;
KD2DNode CheckedNodes[];
int checked_nodes;
KD2DNode List[];
double x_min[], x_max[];
boolean max_boundary[], min_boundary[];
int n_boundary;
public KD2DTree(int i)
{
Root = null;
KD_id = 1;
nList = 0;
List = new KD2DNode[i];
CheckedNodes = new KD2DNode[i];
max_boundary = new boolean[2];
min_boundary = new boolean[2];
x_min = new double[2];
x_max = new double[2];
}
public boolean add(double[] x)
{
if (nList >= 2000000 - 1)
return false; // can't add more points
if (Root == null)
{
Root = new KD2DNode(x, 0);
Root.id = KD_id++;
List[nList++] = Root;
} else
{
KD2DNode pNode;
if ((pNode = Root.Insert(x)) != null)
{
pNode.id = KD_id++;
List[nList++] = pNode;
}
}
return true;
}
public KD2DNode find_nearest(double[] x)
{
if (Root == null)
return null;
checked_nodes = 0;
KD2DNode parent = Root.FindParent(x);
nearest_neighbour = parent;
d_min = Root.distance2(x, parent.x, 2);
;
if (parent.equal(x, parent.x, 2) == true)
return nearest_neighbour;
search_parent(parent, x);
uncheck();
return nearest_neighbour;
}
public void check_subtree(KD2DNode node, double[] x)
{
if ((node == null) || node.checked)
return;
CheckedNodes[checked_nodes++] = node;
node.checked = true;
set_bounding_cube(node, x);
int dim = node.axis;
double d = node.x[dim] - x[dim];
if (d * d > d_min)
{
if (node.x[dim] > x[dim])
check_subtree(node.Left, x);
else
check_subtree(node.Right, x);
} else
{
check_subtree(node.Left, x);
check_subtree(node.Right, x);
}
}
public void set_bounding_cube(KD2DNode node, double[] x)
{
if (node == null)
return;
int d = 0;
double dx;
for (int k = 0; k < 2; k++)
{
dx = node.x[k] - x[k];
if (dx > 0)
{
dx *= dx;
if (!max_boundary[k])
{
if (dx > x_max[k])
x_max[k] = dx;
if (x_max[k] > d_min)
{
max_boundary[k] = true;
n_boundary++;
}
}
} else
{
dx *= dx;
if (!min_boundary[k])
{
if (dx > x_min[k])
x_min[k] = dx;
if (x_min[k] > d_min)
{
min_boundary[k] = true;
n_boundary++;
}
}
}
d += dx;
if (d > d_min)
return;
}
if (d < d_min)
{
d_min = d;
nearest_neighbour = node;
}
}
public KD2DNode search_parent(KD2DNode parent, double[] x)
{
for (int k = 0; k < 2; k++)
{
x_min[k] = x_max[k] = 0;
max_boundary[k] = min_boundary[k] = false; //
}
n_boundary = 0;
KD2DNode search_root = parent;
while (parent != null && (n_boundary != 2 * 2))
{
check_subtree(parent, x);
search_root = parent;
parent = parent.Parent;
}
return search_root;
}
public void uncheck()
{
for (int n = 0; n < checked_nodes; n++)
CheckedNodes[n].checked = false;
}
public void inorder()
{
inorder(Root);
}
private void inorder(KD2DNode root)
{
if (root != null)
{
inorder(root.Left);
System.out.print("(" + root.x[0] + ", " + root.x[1] + ") ");
inorder(root.Right);
}
}
public void preorder()
{
preorder(Root);
}
private void preorder(KD2DNode root)
{
if (root != null)
{
System.out.print("(" + root.x[0] + ", " + root.x[1] + ") ");
inorder(root.Left);
inorder(root.Right);
}
}
public void postorder()
{
postorder(Root);
}
private void postorder(KD2DNode root)
{
if (root != null)
{
inorder(root.Left);
inorder(root.Right);
System.out.print("(" + root.x[0] + ", " + root.x[1] + ") ");
}
}
}
public class KDTree_TwoD_Data
{
public static void main(String args[]) throws IOException
{
int numpoints = 5;
Scanner sc = new Scanner(System.in);
KD2DTree kdt = new KD2DTree(numpoints);
double x[] = new double[2];
System.out.println("Enter the first 5 data set : <x> <y>");
for (int i = 0; i < numpoints; i++)
{
x[0] = sc.nextDouble();
x[1] = sc.nextDouble();
kdt.add(x);
}
System.out.println("Inorder of 2D Kd tree: ");
kdt.inorder();
System.out.println("\nPreorder of 2D Kd tree: ");
kdt.preorder();
System.out.println("\nPostorder of 2D Kd tree: ");
kdt.postorder();
sc.close();
}
}
Output:
$ javac KD2D_Insertion.java $ java KD2D_Insertion Enter the first 10 data set : <x> <y> 0 0 2 3 3 4 4 5 5 6 Inorder of 2D Kd tree: (0.0, 0.0) (2.0, 3.0) (3.0, 4.0) (4.0, 5.0) (5.0, 6.0) Preorder of 2D Kd tree: (0.0, 0.0) (2.0, 3.0) (3.0, 4.0) (4.0, 5.0) (5.0, 6.0) Postorder of 2D Kd tree: (2.0, 3.0) (3.0, 4.0) (4.0, 5.0) (5.0, 6.0) (0.0, 0.0)
Related posts:
Java Program to Implement Sorted Doubly Linked List
Spring MVC Tutorial
Java Program to Perform Preorder Recursive Traversal of a Given Binary Tree
Java Program to Implement the RSA Algorithm
The “final” Keyword in Java
Basic Authentication with the RestTemplate
Adding a Newline Character to a String in Java
Java Program to Implement Euclid GCD Algorithm
Interface trong Java 8 – Default method và Static method
Java Program to Implement Find all Back Edges in a Graph
Java – Combine Multiple Collections
Static Content in Spring WebFlux
Copy a List to Another List in Java
Java Program to Implement Gauss Jordan Elimination
HttpClient Connection Management
Java Program to Check if it is a Sparse Matrix
Jackson – Marshall String to JsonNode
Java – Generate Random String
Java Program to Implement Interval Tree
A Guide to Iterator in Java
Giới thiệu Java Service Provider Interface (SPI) – Tạo các ứng dụng Java dễ mở rộng
Spring Boot - Web Socket
Java Program to Perform Addition Operation Using Bitwise Operators
Spring Boot - Enabling HTTPS
Java Program to Find SSSP (Single Source Shortest Path) in DAG (Directed Acyclic Graphs)
Queue và PriorityQueue trong Java
Java Program to Perform Searching Using Self-Organizing Lists
How to Get a Name of a Method Being Executed?
RegEx for matching Date Pattern in Java
Giới thiệu thư viện Apache Commons Chain
Java Program to Implement Suffix Array
Lớp lồng nhau trong java (Java inner class)