Java Program to Perform Insertion in a 2 Dimension K-D Tree

This is a Java Program to implement 2D KD Tree and insert the input set and print the various traversals. In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of binary space partitioning trees.

Here is the source code of the Java Program to Perform Insertion in a 2 Dimension K-D Tree. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.

//This is a java program to insert an element in a 2D KD Tree
import java.io.IOException;
import java.util.Scanner;
 
class KD2DNode
{
    int axis;
    double[] x;
    int id;
    boolean checked;
    boolean orientation;
 
    KD2DNode Parent;
    KD2DNode Left;
    KD2DNode Right;
 
    public KD2DNode(double[] x0, int axis0)
    {
        x = new double[2];
        axis = axis0;
        for (int k = 0; k < 2; k++)
            x[k] = x0[k];
 
        Left = Right = Parent = null;
        checked = false;
        id = 0;
    }
 
    public KD2DNode FindParent(double[] x0)
    {
        KD2DNode parent = null;
        KD2DNode next = this;
        int split;
        while (next != null)
        {
            split = next.axis;
            parent = next;
            if (x0[split] > next.x[split])
                next = next.Right;
            else
                next = next.Left;
        }
        return parent;
    }
 
    public KD2DNode Insert(double[] p)
    {
        x = new double[2];
        KD2DNode parent = FindParent(p);
        if (equal(p, parent.x, 2) == true)
            return null;
 
        KD2DNode newNode = new KD2DNode(p,
                parent.axis + 1 < 2 ? parent.axis + 1 : 0);
        newNode.Parent = parent;
 
        if (p[parent.axis] > parent.x[parent.axis])
        {
            parent.Right = newNode;
            newNode.orientation = true; //
        } else
        {
            parent.Left = newNode;
            newNode.orientation = false; //
        }
 
        return newNode;
    }
 
    boolean equal(double[] x1, double[] x2, int dim)
    {
        for (int k = 0; k < dim; k++)
        {
            if (x1[k] != x2[k])
                return false;
        }
 
        return true;
    }
 
    double distance2(double[] x1, double[] x2, int dim)
    {
        double S = 0;
        for (int k = 0; k < dim; k++)
            S += (x1[k] - x2[k]) * (x1[k] - x2[k]);
        return S;
    }
}
 
class KD2DTree
{
    KD2DNode Root;
 
    int TimeStart, TimeFinish;
    int CounterFreq;
 
    double d_min;
    KD2DNode nearest_neighbour;
 
    int KD_id;
 
    int nList;
 
    KD2DNode CheckedNodes[];
    int checked_nodes;
    KD2DNode List[];
 
    double x_min[], x_max[];
    boolean max_boundary[], min_boundary[];
    int n_boundary;
 
    public KD2DTree(int i)
    {
        Root = null;
        KD_id = 1;
        nList = 0;
        List = new KD2DNode[i];
        CheckedNodes = new KD2DNode[i];
        max_boundary = new boolean[2];
        min_boundary = new boolean[2];
        x_min = new double[2];
        x_max = new double[2];
    }
 
    public boolean add(double[] x)
    {
        if (nList >= 2000000 - 1)
            return false; // can't add more points
 
        if (Root == null)
        {
            Root = new KD2DNode(x, 0);
            Root.id = KD_id++;
            List[nList++] = Root;
        } else
        {
            KD2DNode pNode;
            if ((pNode = Root.Insert(x)) != null)
            {
                pNode.id = KD_id++;
                List[nList++] = pNode;
            }
        }
 
        return true;
    }
 
    public KD2DNode find_nearest(double[] x)
    {
        if (Root == null)
            return null;
 
        checked_nodes = 0;
        KD2DNode parent = Root.FindParent(x);
        nearest_neighbour = parent;
        d_min = Root.distance2(x, parent.x, 2);
        ;
 
        if (parent.equal(x, parent.x, 2) == true)
            return nearest_neighbour;
 
        search_parent(parent, x);
        uncheck();
 
        return nearest_neighbour;
    }
 
    public void check_subtree(KD2DNode node, double[] x)
    {
        if ((node == null) || node.checked)
            return;
 
        CheckedNodes[checked_nodes++] = node;
        node.checked = true;
        set_bounding_cube(node, x);
 
        int dim = node.axis;
        double d = node.x[dim] - x[dim];
 
        if (d * d > d_min)
        {
            if (node.x[dim] > x[dim])
                check_subtree(node.Left, x);
            else
                check_subtree(node.Right, x);
        } else
        {
            check_subtree(node.Left, x);
            check_subtree(node.Right, x);
        }
    }
 
    public void set_bounding_cube(KD2DNode node, double[] x)
    {
        if (node == null)
            return;
        int d = 0;
        double dx;
        for (int k = 0; k < 2; k++)
        {
            dx = node.x[k] - x[k];
            if (dx > 0)
            {
                dx *= dx;
                if (!max_boundary[k])
                {
                    if (dx > x_max[k])
                        x_max[k] = dx;
                    if (x_max[k] > d_min)
                    {
                        max_boundary[k] = true;
                        n_boundary++;
                    }
                }
            } else
            {
                dx *= dx;
                if (!min_boundary[k])
                {
                    if (dx > x_min[k])
                        x_min[k] = dx;
                    if (x_min[k] > d_min)
                    {
                        min_boundary[k] = true;
                        n_boundary++;
                    }
                }
            }
            d += dx;
            if (d > d_min)
                return;
 
        }
 
        if (d < d_min)
        {
            d_min = d;
            nearest_neighbour = node;
        }
    }
 
    public KD2DNode search_parent(KD2DNode parent, double[] x)
    {
        for (int k = 0; k < 2; k++)
        {
            x_min[k] = x_max[k] = 0;
            max_boundary[k] = min_boundary[k] = false; //
        }
        n_boundary = 0;
 
        KD2DNode search_root = parent;
        while (parent != null && (n_boundary != 2 * 2))
        {
            check_subtree(parent, x);
            search_root = parent;
            parent = parent.Parent;
        }
 
        return search_root;
    }
 
    public void uncheck()
    {
        for (int n = 0; n < checked_nodes; n++)
            CheckedNodes[n].checked = false;
    }
 
    public void inorder()
    {
        inorder(Root);
    }
 
    private void inorder(KD2DNode root)
    {
        if (root != null)
        {
            inorder(root.Left);
            System.out.print("(" + root.x[0] + ", " + root.x[1] + ")  ");
            inorder(root.Right);
        }
    }
 
    public void preorder()
    {
        preorder(Root);
    }
 
    private void preorder(KD2DNode root)
    {
        if (root != null)
        {
            System.out.print("(" + root.x[0] + ", " + root.x[1] + ")  ");
            inorder(root.Left);
            inorder(root.Right);
        }
    }
 
    public void postorder()
    {
        postorder(Root);
    }
 
    private void postorder(KD2DNode root)
    {
        if (root != null)
        {
            inorder(root.Left);
            inorder(root.Right);
            System.out.print("(" + root.x[0] + ", " + root.x[1] + ")  ");
        }
    }
}
 
public class KDTree_TwoD_Data
{
    public static void main(String args[]) throws IOException
    {
        int numpoints = 5;
        Scanner sc = new Scanner(System.in);
        KD2DTree kdt = new KD2DTree(numpoints);
        double x[] = new double[2];
        System.out.println("Enter the first 5 data set : <x> <y>");
        for (int i = 0; i < numpoints; i++)
        {
            x[0] = sc.nextDouble();
            x[1] = sc.nextDouble();
            kdt.add(x);
        }
 
        System.out.println("Inorder of 2D Kd tree: ");
        kdt.inorder();
 
        System.out.println("\nPreorder of 2D Kd tree: ");
        kdt.preorder();
 
        System.out.println("\nPostorder of 2D Kd tree: ");
        kdt.postorder();
        sc.close();
    }
}

Output:

$ javac KD2D_Insertion.java
$ java KD2D_Insertion
 
Enter the first 10 data set : <x> <y>
0 0
2 3
3 4
4 5
5 6
Inorder of 2D Kd tree: 
(0.0, 0.0)  (2.0, 3.0)  (3.0, 4.0)  (4.0, 5.0)  (5.0, 6.0)  
Preorder of 2D Kd tree: 
(0.0, 0.0)  (2.0, 3.0)  (3.0, 4.0)  (4.0, 5.0)  (5.0, 6.0)  
Postorder of 2D Kd tree: 
(2.0, 3.0)  (3.0, 4.0)  (4.0, 5.0)  (5.0, 6.0)  (0.0, 0.0)

Related posts:

Java Program to Construct an Expression Tree for an Infix Expression
Chuyển đổi Array sang ArrayList và ngược lại
An Example of Load Balancing with Zuul and Eureka
Auditing with JPA, Hibernate, and Spring Data JPA
Java Program to Implement Suffix Tree
Spring Boot - Google OAuth2 Sign-In
Java Stream Filter with Lambda Expression
Java Program to Check whether Graph is a Bipartite using DFS
Hướng dẫn Java Design Pattern – Dependency Injection
Hướng dẫn Java Design Pattern – Chain of Responsibility
Java – Rename or Move a File
Loại bỏ các phần tử trùng trong một ArrayList như thế nào trong Java 8?
Reversing a Linked List in Java
Java Program to Solve any Linear Equations
Java Program to Implement vector
Java Program to Implement ConcurrentLinkedQueue API
Hướng dẫn Java Design Pattern – Service Locator
Generating Random Numbers in a Range in Java
Comparing getPath(), getAbsolutePath(), and getCanonicalPath() in Java
Java Program to Implement Double Ended Queue
Java Program to Implement Quick Hull Algorithm to Find Convex Hull
Hướng dẫn Java Design Pattern – DAO
Hướng dẫn Java Design Pattern – Iterator
Comparing Dates in Java
LinkedList trong java
Exploring the New Spring Cloud Gateway
Java Program to Optimize Wire Length in Electrical Circuit
Java Program to Implement Strassen Algorithm
Immutable Map Implementations in Java
Spring WebClient Requests with Parameters
Java Program to Create a Minimal Set of All Edges Whose Addition will Convert it to a Strongly Conne...
Java Program to Implement Find all Cross Edges in a Graph